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1 General

Permutations
• You cannot repeat items that you already used. Equation:

n!
(n − k)!

= n ∗ n − 1 ∗ n − 2 ∗ n − 3 ∗ ... ∗ n − k + 1 (1.1)

Combinations
• Order doesn’t matter, and you can repeat already used items. Equation:

(
n
k

)
= 1

k!
∗ n!

(n − k)!
= n!

k!(n − k)!
(1.2)

Proof by Induction
• Induction is a way of proving something to be true. It is closely related to recursion.

• Task: Prove statement P (k) is true for all k >= b.
– Base Case: Prove the statement is true for P (b). This is usually just a

matter of plugging in numbers.
– Assumption: Assume the statement is true for P (n).
– Inductive Step: Prove that if the statement is true for P (n), then it’s true

for P (n + l). This is like dominoes. If the first domino falls, and one domino
always knocks over the next one, then all the dominoes must fall.

• Example: Let’s use this to prove that there are 2n subsets of an n-element set.
Let s = {a1, a2, ..., an} be the n-element set.

– Base case: Prove there are 20 subsets of {}. This is true, since the only
subset of {} is {} itself.

– Assume that there are 2n subsets of {a1, a2, ..., an}.
– Prove that there are 2n+1 subsets of {a1, a2, ..., an + an+1}.

Consider the subsets of {a1, a2, ..., an + an+1}. Exactly half will contain an+1
and half will not. The subsets that do not contain an+1 are just the subsets
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1 General

of {a1, a2, ..., an}. We assumed there are 2n of those. Since we have the
same number of subsets with x as without x, there are 2n subsets with an+1.
Therefore, we have 2n + 2n subsets, which is 2n+1.

• Many recursive algorithms can be proved valid with induction.
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2 Algebra

2.1 Basics
• Algebraic operations

• Polynomial arithmetic (adding, subtracting, multiplication, division, factorization)

• Complex numbers

• Solving equations and inequalities

• Functions

• Sequences

• Trigonometry (unit circle, the Pythagorean identity, sinusoidal models, etc)

2.2 Linear Algebra
Linear algebra is a mathematical system for manipulating vectors in the spaces described
by vectors. Or in another words, Linear algebra is the branch of mathematics concerning
linear equations and functions, and their representations through matrices and vector
spaces.

• Vectors
– basic operations: +, −, ∗, and / (result is always vector of the same dimen-

sions)
– dot product (result of a.b is a single number, not a vector)
– size of vector (“general” Pythagoras theorem, the length of vector is also

called as norm)
– angle between vectors ( x.y

||x||.||y||)

– distance between vectors (||x − y|| =
√

(x − y, x − y))
– inner product
– sub-spaces and the basis for a subspace
– scalar projection (can be derived from cosine product of orthogonal triangle

- if we want to project vector x on vector b, then it is b.x
||b||2 )
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2 Algebra

– vector projection (result of scalar projection multiplied by the vector itself
and divided by the size of the vector, so from the previous example: b.x

||b||2 b)

– linear independence (b3 ̸= a1b1 + a2b2, for any a1 or a2 = algebraic under-
standing; geometric understanding is that b3 does not lie in the plane spanned
by b1 and b2.

– basis (it is a set of vectors that are orthogonal to each other = are linearly
independent, so they are not linear combinations of each other; and basis
span the space)

– changing basis of a vector (scalar projection of all axes)

• Matrices
– solving equations with matrices (in an augmented matrix, each row represents

one equation in the system and each column represents a variable or the
constant terms)

– basic operations: +,−, ∗, and / (remember that dimensions cannot be ran-
dom)

– determinant (scalar value denoted as |A| that can be computed from the ele-
ments of a square matrix and encodes certain properties of the linear trans-
formation described by the matrix)

– matrix inverses (given 2x2 matrix A, inverse is 1
|A| multiplied by matrix that

has switched scalars on diagonal and numbers on off-diagonal are multiplied
by −1; if determinant is 0, then matrix is not invertible, and this is called a
singular matrix)

– matrix transposition
– how matrices transform space (if we multiply matrix M with vector N , then

the matrix just tells us where the basis vectors go; we can think of for example

vector
[

5
6

]
as 5 ∗

[
1
0

]
+ 6

[
0
1

]
, and calculate the original multiplication

of M ∗ N with this)
– matrix transformations (changing basis with a matrix for stretching, rotation,

etc, but also combination and composition of matrix transformations; in fact,
matrices are a way of representing linear transformations)

• Alternate coordinate systems (bases)
– orthogonal complements
– orthogonal projections
– change of basis
– orthonormal bases and the Gram-Schmidt process (method for orthonormal-

izing a set of vectors in an inner product space, most commonly the Euclidean
space))
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2 Algebra

– Eigenvalues and Eigenvectors
∗ They mean “characteristics”. If we perform a certain linear transforma-

tion to a space some vectors from this space will not be changed at all,
some will change their length, and some even their direction. Those vec-
tors which do not change their original direction are eigenvectors, and
their length changes are eigenvalues. Be careful, if a vector changes its
direction by 180 degrees, that still means that it is eigenvector, but only
its direction was reverted, thus its eigenvalue is −1.

∗ Imagine a square space, and 3 vectors in that - one horizontal, one verti-
cal, and one diagonal (between them). If you stretch the square vertically,
then vertical vector will have bigger size, horizontal vector will not be
changed at all, and diagonal vector will point to different direction (and
will have different length). Vectors which direction was not changed by a
given transformation are called eigenvectors. Because horizontal vector
was not changed, it is eigenvector, and because the horizontal vector’s
length was unchanged, we say that it has a corresponding eigenvalue of
1 whereas, the vertical eigenvector doubled in length, so we say it has an
eigenvalue of 2 (let’s imagine that we stretched the square two times).

– Project high dimensional data into lower dimensional space
∗ Projection onto k-dimensional sub-spaces (projection into 1-D is

simpler, it is explained here as well). Consider a n-dimensional vector
space V with the dot product at the inner product and a subspace U
of V . With a basis vector b1, b2, ..., bk of U , we obtain the orthogonal
projection of any vector x ∈ V onto U via πU (x) = Bλ, where B =
(b1|b2|...|bk) ∈ Rnxk, and λ is the coordinate of πU (x) with respect to
b1, b2, ..., bk of U , and can be calculated, in such multi-dimensional space
as λ = (BT B)−1BT x (and in 1-D space where we have just 1 basis vector
b, as λ = bT x

bT b
= bT x

||b||2 ).

∗ The projection matrix can be calculated as P = B(BT B)−1BT (and in 1-
D space, it would be calculated as P = bbT

bT b
= bbT

||b||2 ), such that πU (x) = Px
for all x ∈ V .

∗ So the projected vector can be represented as a linear combination of the
basis of the subspace, and the vector that connects the data point and
its projection must be orthogonal to the subspace.

∗ For example, let’s have a vector x =

 6
0
0

 and the subspace U spanned

by the basis vectors b1 =

 1
1
1

 and b2 =

 0
1
2

.
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2 Algebra

· The orthogonal projection was given as πu(x) = Bλ

· Basis B is calculated as a concatenation of all input basis, so B = 1 0
1 1
1 2


· Lambda λ, which is a vector that contains coordinates of projection

point with respect to bases, can be calculated as λ = (BT B)−1BT x.

· So first, we can calculate BT x =
[

6
0

]

· Then, BT =
[

1 1 1
0 1 2

]

· Then, BT B =
[

3 3
3 5

]
and its inverse is (BT B)−1 =

[
5/6 −1/2

−1/2 1/2

]
· So, now we can calculate λ, either with the inverse matrix calculated

from the previous step using equation λ = (BT B)−1BT x, or with
the following equation:BT Bλ = BT x (here we just eliminated inverse
matrix (BT B)−1 so that only BT B is on the left side) - in either way,

the result is λ =
[

5
−3

]
· And now, from lambda, we can calculate the projection of x onto

space U : πU (x) = λB = 5b1 + (−3)b2 =

 5
2

−1



· The resulting projection matrix in this example is P = 1/6

 5 2 −1
2 2 2

−1 2 5


and it can be seen that it is symmetric (projection matrices are always
symmetrical).

– PCA - an algorithm that minimizes average reconstruction errors by orthog-
onal projections. It is quite old mathematical method, and it is detailed in
my ML notes book.
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3 Calculus

3.1 Limits and continuity

3.2 Differentiation
• Multivariate Calculus - the words multi-variable and multivariate are typically

used interchangeably.
– When you are differentiating some expression that has multiple variables, and

you are differentiating the whole expression just by a single variable, then all
other variables are considered to be constants (and constants differentiate to
0).

– There are different symbols when you differentiate function with one vari-
able (symbol is d), and function with many variables (this is called partial
derivative, and the symbol is ∂).

– Partial differentiation is essentially just taking a multi-dimensional problem
and pretending that it’s just a standard 1D problem when we consider each
variable separately. So partial differentiation as just a simple extension of the
single variable method.

– Total derivative of a function is a sum of all possible partial derivatives (over
all variables in a given function, so one partial derivation per variable).

– For example, given a function f(x, y, z) = sin(x)eyx2

∗ Then its total derivative is the following (where each variable x, y, z is
some function of parameter t, but that should be known/given):
df(x,y,z)

dt = ∂f
∂x

dx
dt + ∂f

∂y
dy
dt + ∂f

∂z
dz
dt

∗ All partial derivatives:
∂f
∂x = cos(x)eyz2

∂f
∂y = sin(x)eyz2

z2

∂f
∂z = sin(x)eyz22yz

• The sum rule, power rule, product rule, and chain rule.

• Partial and total derivative

• Dependent and independent variables
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3 Calculus

– Imagine a function that calculates a speed of vehicle (y-axis) and time (x-
axis).

– At some particular time, there is always just 1 speed.
– On the contrary, one particular speed can happen in multiple times.
– So, time is independent variable, and vehicle speed is dependent variable.

• The Jacobian
– It is simply a row vector where each entry is the partial derivative of a given

function fwith respect to each one of its variables.
– Once we have such vector, then we can put some values, calculate resulting

vector with such numbers, and we can see the direction from that given point.
We can do this with many points and we can then construct the whole space
(with “regions” - higher / lower, that represents local or global minimums
and maximums).

– So Jacobian describes the gradient of a multi-variable system. And if you
calculate it for a scalar valued multi-variable function, you get a row vector
pointing up the direction of greater slope, with a length proportional to the
local steepness.

• The Hessian
– In many ways, the Hessian can be thought of as a simple extension of the

Jacobian vector.
– For the Jacobian, we collected together all of the first order derivatives of a

function into a vector. In the Hessian, we’re going to collect all of the second
order derivatives together into a matrix.

– It often makes life easier to find the Jacobian first and then differentiate its
terms again to find the Hessian. But the Jacobian is vector, the Hessian is
a square matrix. And the Hessian matrix is symmetrical across the leading
diagonal, if a function is continuous, meaning that it has no sudden changes.

– The power of the Hessian is, firstly, that if its determinant is positive, we know
we are dealing with either a maximum or a minimum. Also, we can look on
the first term, which is sitting at the top left-hand corner of the Hessian. If
the number is also positive, we know we’ve got a minimum. Whereas, if it’s
negative, we’ve got a maximum.

• Taylor Series
– Given some complicated function on the input, it is possible to build an

approximation to it using a series of simpler functions.
– But such approximation is only possible, if we know everything about the

function at some point - the functions value, its first derivative, second deriva-
tive, third derivative, and so on.
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3 Calculus

– Then we can use this information to reconstruct the function everywhere else.
So, if I know everything about it at one place, I also know everything about it
everywhere. However, this is only true for a certain type of function that we
call well behaved, which means functions that are continuous and that you
can differentiate as many times as you want.

– By the way, Maclaurin series is a Taylor series expansion of a function
about 0. So in another words, if the Taylor series is centered at zero, then we
are talking about Maclauring series.

– Maclaurin series says that if you know everything about a function at the
point x = 0, then you can reconstruct everything about it everywhere. The
Taylor series simply acknowledges that there is nothing special about the
point x = 0. And so says that if you know everything about the function
at any point, then you can reconstruct the function anywhere. So a small
change, but an important one.

• Newton Method
– Also known as Newton-Raphson method, is a way to quickly find a good

approximation for the root of a real-valued function f(x) = 0. It uses the
idea that a continuous and differentiable function can be approximated by a
straight line tangent to it.1

– It is iterative algorithm, and we can find a solution by following this equation
(until we get a desired accuracy.):

xi+1 = xi − f(xi)
f ′(xi)

(3.1)

where δx = − f(x)
f ’(x) is a step size of this iterative algorithm, and when f ′(x) is very

small, this step can get big. In fact f ′(x) is exactly 0 at turning points of f(x).
This is where Newton-Raphson behaves the worst since the step size is
infinite.

– It’s a really powerful way to solve an equation just by evaluating it and its
gradient a few times.

• Gradient Descent

• Lagrange Multipliers
– It is a strategy for finding the local maxima and minima of a function subject

to equality constraints. So it can be seen as a technique to find a minimum
of a function subject to a constraint, i.e. solutions lying on a particular curve
(for example within a circle).

– For example, calculate the minimum of function f(x, y) = −exp(x − y2 + xy)
on the constraint g(x, y) = cosh(y) + x − 2 = 0

1https://brilliant.org/wiki/newton-raphson-method/
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3 Calculus

∗ At first, you should calculate 4 derivatives: df
dx , df

dy , dg
dx , and dg

dy .

∗ Then, calculate roots: x = df
dx ∗ λ dg

dx , y = df
dy ∗ λdg

dy ,and −g(x, y) for some
initial x, y, and λ.

∗ From resulting values, you should obtain minima or maxima.

3.3 Integration

11



4 Statistics and Probability

4.1 General
• A probability is a number that represents the likelihood of an uncertain event (and

is between 0 and 1, inclusive).

• In statistics “population” refers to the total set of observations that can be made.
For example, if we want to calculate average height of humans present on the earth,
“population” will be the “total number of people actually present on the Earth”.

• A sample, on the other hand, is a set of data collected/selected from a pre-defined
procedure. For our example above, it will be a small group of people selected
randomly from some parts of the Earth.

• When “population” is infinitely large it is improbable to validate any hypothesis
by calculating the mean value or test parameters on the entire population. In such
cases, a population is assumed to be of some type of a distribution.

• Types of matrix / vector multiplication are below. We got basically:
– matrix multiplication (dot / inner product)
– outer product
– element-wise multiplication

12



4 Statistics and Probability

Figure 4.1: Types of vector and matrix multiplication by examples.
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4 Statistics and Probability

• Variance
– It is used to characterize the variability or spread of data points in a dataset.
– It is a statistic that is used to measure deviation in a probability distribution.

Deviation is the tendency of outcomes to differ from the expected value.
– So we can describe the concentration of data points around the mean value

(=expected value) with variance.
– If we would multiply each sample in a dataset by 2, its variance would be 4

times bigger. If we would just increment each value, variance would be the
same.

– Variance can be calculated as follows:

σ2 = V ar[X] = E[(X−µ)2] =
∑

x

(x − µ)2p(x) (4.1)

where X is a numerical discrete random variable with distribution p(x) and
expected value µ = E(X).

– Note that from the definition, the variance is always non-negative, and if the
variance is equal to zero, then the random variable X takes a single constant
value, which is its expected value µ.

• Standard deviation
– The standard deviation of a random variable X, denotedσ, is the square root

of the variance:

σ(X) =
√

V ar[X] (4.2)

• Covariance
– The covariance generalizes the concept of variance to multiple random vari-

ables.
– Instead of measuring the fluctuation of a single random variable, the covari-

ance measures the fluctuation of two variables with each other.
– For example, imagine linear decreasing function (a simple line). So if the x

value of a data point increases, then on average, the y value decreases. So
that x and y are negatively correlated. This correlation can be captured by
extending the notion of the variance to what is called the covariance of the
data.

– We can construct covariance matrix, in which variances are on the diagonal
and cross-covariances on the off-diagonal.

14



4 Statistics and Probability

– We can calculate covariance of random variables X and Y as follows:1

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (4.3)

– When dealing with a large number of random variables Xi it makes sense to
consider a covariance matrix whose m, n-th entry is Cov(Xm, Xn). Since
Cov(X, Y ) = Cov(Y, X), the covariance matrix is always symmetric.

• Expected value2

– It is the theoretical mean value of a numerical experiment over many repeti-
tions of the experiment.

– So it is a measure of central tendency; a value for which the results will tend
to.

– When a probability distribution is normal, a plurality of the outcomes will be
close to the expected value.

– Expected value of discrete random variable
∗ Let X be a discrete random variable. Then the expected value of X,

denoted as E[X] or µ, is:

E[X] = µ =
∑

x

xP (X = x) (4.4)

∗ An example: A stack of cards contains one card labeled with 1, two cards
labeled with 2, three cards labeled with 3, and four cards labeled with 4.
If the stack is shuffled and a card is drawn, what is the expected value of
the card drawn?
Solution: So, there are 1 + 2 + 3 + 4 = 10 cards. Let X be our random
variable that represents the value of the card drawn:
P (X = 1) = 1

10

P (X = 2) = 2
10

P (X = 3) = 3
10

P (X = 4) = 4
10

And this gives us expected value E[X] = 1 ∗ 1
10 + 2 ∗ 2

10 + 3 ∗ 3
10 + 4 ∗ 4

10 =
30
10 = 3. So the expected value of the card drawn is 3.

– Expected value of continuous random variable

1https://brilliant.org/wiki/covariance
2https://brilliant.org/wiki/expected-value/
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4 Statistics and Probability

∗ Let X be a continuous random variable and f(x) be a probability density
function. Then the expected value of X, denoted as E[X] or µ, is:

E[X] =
∫

x
xf(x)dx (4.5)

∗ An example: Given the probability density function f(x) = 3x2 defined
on the interval [0, 1], what is E[X]?

By the definition above, E[X] =
∫ 1

0 x3x2dx =
∫ 1

0 3x3dx =
[

3
4x4

]1
0

= 3
4 .

4.2 Central Limit Theorem
• CLT states that given a sufficiently large sample size from a population with a

finite level of variance, the mean of all samples from the same population will be
approximately equal to the mean of the population.

• No matter what the shape of the original (parent) distribution, the sampling dis-
tribution of the mean approaches a normal distribution. A normal distribution is
approached very quickly as n increases, and note that n is the sample size for
each mean and not the number of samples. In a sampling distribution of the
mean the number of samples is assumed to be infinite.

16



4 Statistics and Probability

Figure 4.2: Central Limit Theorem explanation via example.
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4 Statistics and Probability

• So the probability distribution of the average of n independent, identically distributed
(iid) random variables converges to the normal distribution for large n.3 In fact,
n = 30 is typically enough to observe convergence.

• The somewhat surprising strength of the theorem is that (under certain natural
conditions) there is essentially no assumption on the probability distribution of
the variables themselves; the theorem remains true no matter what the individual
probability distributions are.

4.3 Confidence Interval
• In statistics, a confidence interval (CI) is a type of interval estimate, computed

from the statistics of the observed data, that might contain the true value of an
unknown population parameter. The interval has an associated confidence level,
that quantifies the level of confidence that the deterministic parameter is captured
by the interval.

• Confidence level is the probability that the value of a parameter falls within a
specified range of values.

• More strictly speaking, the confidence level represents the frequency (i.e. the pro-
portion) of possible confidence intervals that contain the true value of the unknown
population parameter.

• In other words, if confidence intervals are constructed using a given confidence
level from an infinite number of independent sample statistics, the proportion of
those intervals that contain the true value of the parameter will be equal to the
confidence level.4

4.4 Law of Large Numbers
• In probability theory, the law of large numbers (LLN) is a theorem that describes

the result of performing the same experiment a large number of times. According
to the law, the average of the results obtained from a large number of trials should
be close to the expected value, and will tend to become closer as more trials are
performed.

• The LLN is important because it guarantees stable long-term results for the aver-
ages of some random events.

3https://brilliant.org/wiki/normal-distribution/
4https://towardsdatascience.com/a-very-friendly-introduction-to-confidence-intervals-

9add126e714
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4 Statistics and Probability

4.5 Statistical Significance
• An observed event is considered to be statistically significant when it is highly

unlikely that the event happened by random chance.5

• More specifically, an observed event is statistically significant when its p-value falls
below a certain threshold, called the level of significance. Passing this threshold
and achieving statistical significance often marks a decision or conclusion to be
drawn from the results of a study.

• A p-value is the probability that an event will happen that is as extreme as
or more extreme than an observed event. This probability also comes with the
assumption that extreme events occur with the same relative frequency as they
do under normal circumstances. Put more simply, a p-value can be considered to
be a measurement of how unusual an observed event is. The lower the p-value,
the more unusual the event is. So p-values come from running experiments and
comparing the results to what one would expect under normal circumstances.

• A challenge in interpreting data with statistics is that a result can always be at-
tributed to random chance, even a result with an extremely low p-value. Applying
a level of significance is a way to set a standard for when to stop attributing
results to chance.

• A level of significance, denoted by α, is a numerical threshold that is compared to
a p-value. When the p-value of an observed event passes below the level of signif-
icance, the observed event is considered to be statistically significant. Statistical
significance often leads to a decision being made or a conclusion being drawn from
the results of an experiment. The most commonly chosen level of significance is
α = 0.05.

• A smaller level of significance:
– will ensure a more conservative interpretation of the results
– is chosen when an incorrect conclusion can be harmful
– often requires much more collection of data

• p-values and statistical significance are used in hypothesis tests. There
are a multitude of different types of hypothesis tests, each with a different way to
compute the p-value.

4.6 Statistical Tests
• A null hypothesis, proposes that no significant difference exists in a set of given

observations. You got null and alternative hypothesis (negation of null hypothesis).
5https://brilliant.org/wiki/statistical-significance/
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4 Statistics and Probability

For rejecting a null hypothesis, a test statistic is calculated. This test-statistic is
then compared with a critical value and if it is found to be greater than the critical
value the hypothesis is rejected. To be more precise, the null hypothesis is rejected
if the test statistic falls in the critical region. The critical values are the boundaries
of the critical region. If the test is one-sided (like a χ2 test or a one-sided t-test)
then there will be just one critical value, but in other cases (like a two-sided t-test)
there will be two.

• A critical value is a point (or points) on the scale of the test statistic beyond which
we reject the null hypothesis, and, is derived from the level of significance α of
the test. Critical value can tell us, what is the probability of two sample means
belonging to the same distribution. Higher, the critical value means lower the
probability of two samples belonging to same distribution. The general critical
value for a two-tailed test is 1.96, which is based on the fact that 95% of the area
of a normal distribution is within 1.96 standard deviations of the mean.

• Critical values can be used to do hypothesis testing in following way:
1. Calculate test statistic
2. Calculate critical values based on significance level alpha
3. Compare test statistic with critical values.

• If the test statistic is lower than the critical value, accept the hypothesis or else
reject the hypothesis.

• The determination of distribution type (e.g Poisson, discrete, binomial) is neces-
sary to determine the critical value and test to be chosen to validate any hypothesis.

• As we know critical value is a point beyond which we reject the null hypothesis.
P-value on the other hand is defined as the probability to the right of respective
statistic (Z, T or chi).

• In z-test, the sample is assumed to be normally distributed. A z-score is calculated
with population parameters such as “population mean” and “population standard
deviation” and is used to validate a hypothesis that the sample drawn belongs to
the same population.

z = x − µ
σ√
n

where x is sample mean and µ is population mean. σ√
n

is population standard
deviation.

• t-test is used to compare the mean of two given samples. Like a z-test, a t-test also
assumes a normal distribution of the sample. A t-test is used when the population
parameters (mean and standard deviation) are not known.
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t = x1 − x2
σ√
n1

+ σ√
n2

where x1,n1 are mean and size of sample 1 and x2, n2 are mean and size of sample
2.

• ANOVA, also known as analysis of variance, is used to compare multiple (three
or more) samples with a single test.

• Chi-square test
– It is used to compare categorical variables.
– This refers to a class of statistical tests in which the sampling distribution

is a chi-square distribution. Usually, the chi-squared test is used to test for
independence between two data sets.6

– The chi-squared statistic is defined by:

χ2 =
n∑

i=1

(Oi − Ei)2

Ei
(4.6)

where Oi is the number of observations of type i, and Ei is the expected
number of observations of type i.

– Because of this approximation, a number of conditions need to hold in order
for the test to be valid. Should they hold, the chi-squared test proceeds as
follows:

1. Calculate the chi-squared statistic χ2, defined above.
2. Determine the number of degrees of freedom df of the statistic. This

depends on the particular expected distribution, but is usually n − 1
(where n is the number of categories).

3. Select a confidence level, usually either 95% or 99%. See Section 4.3 for
more information.

4. Determine the critical value of the χ2-distribution with df degrees of
freedom and the confidence level chosen above. Essentially, this is defined
as the value x at which the portion of the chi-squared distribution below
x is at least the desired confidence level.

5. Compare the chi-squared statistic to the critical value. If it is below the
critical value, the null hypothesis is not rejected. If it is above the critical
value, the null hypothesis is rejected, and the expected distribution is
probably wrong.

6https://brilliant.org/wiki/chi-squared-test
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– Intuitively, the test relies on the fact that if the expected distribution is indeed
correct, the difference between the observed and expected distributions should
approximate a multivariate normal distribution, which is approximated by
a chi-squared distribution by the central limit theorem. If the chi-squared
statistic is larger than the critical value, then it is unlikely to have occurred
under this assumption, and thus the assumption is likely to be false.

– An example: Suppose that after 96 rolls of a die, the die has shown 24x 1s,
15x 2s, 14x 3s, 16x 4s, 14x 5s, and 13x 6s. Is the die unfair? This can be
tabulated in the following table:

i Oi Ei Oi − Ei
(Oi−Ei)2

Ei

1 24 96/6=16 8 4
2 15 16 -1 0.0625
3 14 16 -2 0.25
4 16 16 0 0
5 14 16 -2 0.25
6 13 16 -3 0.5625

Table 4.1: Chi-square test example

so the chi-squared statistic is 4 + 0.0625 + 0.25 + 0 + 0.25 + 0.5625 = 5.1254.
The number of degrees of freedom is df = 6 − 1 = 5, and the chi-squared
distribution with 5 degrees of freedom and 95% confidence level has critical
value 11.07. Since the chi-squared statistic is less than the critical value, this
observation does not provide enough information to reject the null hypothesis
of fairness.

4.7 Density Estimation
• It can be said, that this belongs to unsupervised learning. Density estimation

is a problem of modeling the probability density function (pdf) of unknown
probability distribution from which the dataset has been drawn.

• It can be used for many applications, for example for intrusion detection.

• We can use parametric (for example a multivariate normal distribution - MVN),
or nonparametric model (for example a kernel regression).

• Let {xi}N
i=1 be a one-dimensional dataset (a multi-dimensional case is similar),

whose examples were drawn from a distribution with an unknown pdf f with
xi ∈ R for all i = 1, ..., N . We are interested in modeling the shape of f .
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– Now consider using a kernel model of f , denotes as f̂b, which is given by:

f̂b(x) = 1
Nb

N∑
i=1

k(x − xi

b
) (4.7)

where b is a hyperparameter that controls the trade-off between bias and
variance of our model and k is a kernel function. This can be, for example a
Gaussian kernel:

k(z) = 1√
2π

exp(−z2

2
) (4.8)

– We look for such a value of b that minimizes the difference between the real
shape of f and the shape of our model f̂b. A reasonable choice of measure of
this difference is called the mean integrated squared error (MISE):

MISE(b) = E(
∫
R

(f̂b(x) − f(x))2dx) (4.9)

intuitively, it is the square difference between the real pdf f and our model
of it f̂b. The integral

∫
R replaces the summation

∑N
i=1that is implemented in

mean squared error, while the expectation operator E replaces the average 1
N .

Because our loss (f̂b(x) − f(x))2 is a function with a continuous domain, we
have to replace the summation with the integral. The expectation operator E
means that we want b to be optimal for all possible realizations of our training
set {xi}N

i=1. That is important, because f̂b is defined on a finite sample of
some probability distribution, while the real pdf f is defined on an infinite
domain R.

– Now we can rewrite the right-hand side term in equation. 4.9:
E[
∫
R f̂b(x)2dx] − 2E[

∫
R f̂b(x)f(x)dx] + E[

∫
R f(x)2dx]

where:
∗ the first term: the unbiased estimator is given by

∫
R f̂b(x)2dx.

∗ the second term: the unbiased estimator can be approximated by cross-
validation − 2

N

∑N
i=1 f̂

(i)
b (xi), where f̂

(i)
b is a kernel model of f computed

on our training set with the example xi excluded. The term
∑N

i=1 f̂
(i)
b (xi)

is known in statistics as the leave one out estimate, a form of cross-
validation in which each fold consists just of one example. It can be
shown, that the leave one out estimate is a n unbiased estimator of E(a)
where a =

∫
R f̂b(x)f(x)dx and a is expected value of the function f̂b,

because f is a pdf.
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∗ the third term is independent of b and thus can be ignored.
– Now, to find the optimal value for b, we minimize the cost defined as

∫
R f̂b(x)2dx−

2
N

∑N
i=1 f̂

(i)
b (xi) and we can find this value of b using grid search.

Figure 4.3: Kernel density estimation: (a) good fit; (b) overfitting; (c) underfitting; (d)
the curve of grid search for the best value for b.

4.8 Frequentist Probability
• Historically, basic frequency probability theory dominated statistical analysis.

• It is an interpretation of probability; it defines an event’s probability as the limit
of its relative frequency in many trials. This interpretation supports the statistical
needs of experimental scientists; probabilities can be found (in principle) by a
repeatable objective process (and are thus ideally devoid of opinion).

• Frequentist probability has been misapplied in the past. Let’s have a look on one
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example, called Monty Hall problem.7

– The Monty Hall problem is a famous, seemingly paradoxical problem in con-
ditional probability and reasoning using Bayes’s theorem.

– Monty Hall is the host of a game show and gives a contestant the chance to
choose 1 of 3 doors without knowing what is behind them. The catch is that
one of the doors has a prize like a car, and the other two have goats.

– After the contestant picks a door, Monty then opens one of the doors that
the contestant did not pick and reveals that this door has a goat behind it
(Monty always knows where the goat is, and opens always door with a goat).
Before the final reveal, Monty gives the contestant the chance to switch their
choice of door.

– The frequency-probability-guided approach to looking at this choice is to
think that because there are now only 2 doors left and 1 of them has a
car and the other a goat, the chance of picking right is 50-50 and it doesn’t
matter if a contestant changes their door.

– This, however, is incorrect, and Bayesian thinking helps to illustrate why.
– A Bayesian probabilist will realize that Monty opening one door is additional

evidence provided to the contestant (and this is important!). The Bayesian
would realize that the contestant’s initial guess had a 1/3 chance of being
right, and a 2/3 chance of being wrong. Now that Monty has deliberately
(and not randomly!) eliminated 1 wrong door and the 2/3 chance assigns
itself to the unchosen and unopened door, staying with their door still has a
1/3 chance of being right, but switching has a 2/3 chance of being right.

– The Monty Hall problem isn’t the only place where educated people become
confused. Physicians and scientists have mistakenly used frequency probabil-
ities when they should use Bayes’ theorem (see Section 4.9) to report results
and analyze clinical tests.

4.9 Bayes’ Theorem and Conditional Probability
• Bayes’ theorem is a formula that describes how to update the probabilities of

hypotheses when given evidence.

• Given a hypothesis H and evidence E, Bayes’ theorem states that the relationship
between the probability of the hypothesis before getting the evidence P (H) and

7https://brilliant.org/wiki/bayesian-theory-in-science-and-math/?subtopic=probability-
2&chapter=conditional-probability
https://brilliant.org/wiki/monty-hall-problem/
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the probability of the hypothesis after getting the evidence P (H|E) is:

P (H|E) = P (E|H)P (H)
P (E)

(4.10)

• This relates the probability of the hypothesis before getting the evidence P (H),
to the probability of the hypothesis after getting the evidence, P (H | E). For this
reason, P (H) is called the prior probability, while P (H | E) is called the posterior
probability. The factor that relates to P (E|H)

P (E) is called the likelihood ratio. Using
these terms, Bayes’ theorem can be rephrased as "the posterior probability equals
the prior probability times the likelihood ratio".

Deriving Bayes’ Theorem
• Bayes’ theorem centers on relating different conditional probabilities. A conditional

probability is an expression of how probable one event is given that some other
event occurred (a fixed value).

• For a joint probability distribution over events A and B, P (A∩B), the conditional
probability of A given B is defined as:

P (A|B) = P (A ∩ B)
P (B)

(4.11)

For example, a joint probability is "the probability that your left and right socks
are both black", whereas a conditional probability is "the probability that your left
sock is black if you know that your right sock is black", since adding information
alters probability.

• Note that P (A ∩ B) is the probability of both A and B occurring, which is the
same as the probability of A occurring times the probability that B occurs given
that A occurred: P (B|A) ∗ P (A)

• Using the same reasoning, P (A ∩ B) is also the probability that B occurs times
the probability that A occurs given that B occurs: P (A|B) ∗ P (B). The fact that
these two expressions are equal leads to Bayes’ Theorem.

• This result for dependent events and for Bayes’ theorem are both valid when the
events are independent. In these instances, P (A | B) = P (A) and P (B | A) =
P (B), so the expressions simplify.
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