Software Development Notes

Lessons Learned

Ladislav Suldk <laco.sulak@gmail.com>

April 28, 2021

Contents

1 General 2
1.1 Programming Paradigms L. 19
1.2 Software Development Paradigms and Methodologies 23
1.3 Continuous Integration/Delivery /Deployment 29
1.4 Concurrency o o vt i e e e 39

2 Testing 44
2.1 Unit Tests e 48
2.2 Component Tests e 49
2.3 Integration Tests L 50
2.4 System Tests e 52
2.5 Exploratory Tests. L 53
2.6 Specialized Tests 54

3 Clean Code 57
3.1 Comments e e e e 60
3.2 Formatting L e 62
3.3 Error Handling 63
3.4 Functions and Methods, 64
3.5 Classes oo 70
3.6 System Level 76

4 Design Patterns 80
4.1 Creational Patterns 81
4.2 Structural Patterns 83
4.3 Behavioral Patterns o 86

5 Software Architecture Patterns 92
5.1 Single-Tiered / Monolithic Architecture 107
5.2 Multi-Tiered / Multi-Layered Architecture 107
5.3 Client-Server Architecture L. 109
5.4 Master-Slave Pattern 109
5.5 Broker Pattern 109
5.6 Peer-to-Peer Architecture Lo 109
5.7 Model-View-Controller Pattern 110
5.8 Representational State Transfer (REST) 110
5.9 Event-Driven Architecture 111

ii

Contents

5.10 Microkernel Architecture
5.11 Space-Based Architecture
5.12 Service-Oriented Architecture (SOA)
5.13 Microservices Pattern

6 Cloud Technologies
6.1 Amazon Web Services

7 Interviews
7.1 Questions for Employer oL
7.2 General Thingsto Know oL
7.3 Behavioral Questions
7.4 Software Engineering Interview Preparation
7.5 Machine Learning Interview Preparation
7.6 Topics o

8 Linux/Unix
8.1 General Tools and Packages 0L
8.2 Helper tools for smaller scripting
8.3 Networking
8.4 Services and Processes L L
8.5 Bash

9 Mastering Git
9.1 Basics & General
9.2 Commit message e
9.3 Submodules
9.4 Rebasing.
9.5 Feature Branch e
9.6 Reset. e
9.7 Checkout
9.8 Revert e
9.9 Tags e
9.10 Git Hooks e
9.11 Cherry Pick o
9.12 GitLab e
9.13 Git branching workflows o oo

10 Software Licences [SK]
10.1 General L
10.2 MIT Licence it
10.3 Apache Licence, v2.0
104 GNU AGPLv3
10.5 GNU GPLv3 a LGLPv3

iii

134
136

150
152
153
155
157
168
169

171
171
172
175
176
177

178
178
183
184
185
188
189
190
191
192
193
195
196
197

10.6 Mozilla Public License 2.0
10.7 The Unlicense o
10.8 Zlib-Libpng License (Zlib) o oL
10.9 BSD 2-Clause License (FreeBSD/Simplified)
10.10BSD 3-Clause License (Revised)
10.11EULA

11 JetBrains IDE (PyCharm) [SK]
11.1 Keyboard Shortcuts

12 References

1 General

o "Check your context. Only then, proceed’, Udi Dahan.

o Refactoring, a good quote: "When we really dive into the reasons why we can’t let
something go, there are really only two: An attachment to the past, or a fear for
the future."

o If we have learned anything over the last couple of decades, it is that programming
is a craft more than it is a science. To write clean code, you must first write dirty
code and then clean it.

e In most web-based development environments, the architecture can be broken down
like this:
— Local development and unit testing on the developer’s machine
— Development server where manual or automated integration testing is done
— Staging server where the QA team and the users do acceptance testing

Production server

o Customers don’t know exactly what they want and thus don’t always tell the truth.
They use their terms and their contexts. They leave out significant details. So,
how can you possibly deliver a software project to someone who isn’t telling you
the whole truth about what they want? It’s fairly simple. Just interact with them
more. Challenge your customers early, and challenge them often.

How to Learn, The 10-step system

For example, learning technology - books are good, if you have a lot of time, but it is
unnecessary and very time-demanding, and everything truly important is mixed with
tons of little details! So basics of an alternative approach:

1. How to get started: What were the basic things I needed to know to get started
using whatever I was learning?

2. The breadth of the subject: How big was the thing I was learning and what
could I do with it? I didn’t need to know every detail to start, but if I had a
decent overview of what I could do and what was possible, I could always find
more details later.

3.

1 General

The basics: Beyond just getting started, what were the basic use cases and the
most common things I’d need to know to use a particular technology? What was
the 20% I could learn that would cover 80% of my daily usage?

It turns out that getting those three pieces of knowledge isn’t as easy of a task as it
might seem. Learning how to get started with a technology can be a challenge, and it’s
often difficult to find out what is the 20% you need to know to be 80% effective with a
technology. So a solution to address these problem is the following:

1.

Get the big picture - determine how big the topic is and what kind of subtopics
exist within a few hours of research. To complete this step, do some basic research
on the topic you want to learn about. You can probably accomplish most of this
research using internet searches. If you happen to have a book on the subject, you
might read an introductory chapter to skim through the material. Don’t spend
too much time on this step, though. Remember, the goal isn’t to actually learn
the topic here, but to just get a big picture of what it’s about and how big it is.

. Determine scope - now that you have at least somewhat of an idea of what your

topic is and how big it is, it’s time to narrow down your focus to determine what
exactly you want to learn.

. Define success - without knowing what success looks like, it’s both difficult to

aim and to know when you’ve actually hit the target. Before you try to learn
anything, you should have a clear picture in your mind of what success will look
like. When you know what your target is, you can more easily work backwards
from the goal to determine the steps you need to take to get there. The goal of
this step is to come up with a clear and concise statement that will define success
for your learning endeavor.

. Find resources - in this step you want to find as many resources as possible for

learning about the topic you’ve selected. Don’t worry about quality at this point.
This is similar to a brainstorming step. Later on you’ll filter your resources and
select the best ones, but for now you want to get as many different resources as
possible.

. Create a learning plan - now that you have some resources, you can use those

resources to get an idea of what you should learn and in what order you should
learn it. For this step, you need to create your own learning path. Think of it
as an outline for a book you’d write on the subject. In fact, your learning path
will probably be very similar to the table of contents of a book when you’re done.
You basically want to end up with a series of modules you individually focus on
learning until you reach your final goal. A good way to create your learning plan
is to see how others are teaching the subject you want to learn about. When I'm
working on this step, I'll often look at the table of contents of several of the books
I’ve chosen as possible resources from step 4. If five different authors have chosen

1 General

to break up their content into the same sets of modules and the same ordering,
chances are I should make my learning plan follow a similar approach.

. Filter resources - at this point, you probably have plenty of books, blog posts,
and other resources for learning about digital photography, but the problem is that
you can’t possibly utilize all of them. Much of the data is redundant and not all
of it will fit your learning plan. It’s not practical to try to read 10 books and 50
blog posts on a subject—and even if you did, a large portion of that information
would be duplicated. It’s important to narrow down your resources to a smaller
list of the best ones to help you achieve your goals. For this step, go through all
the resources you've gathered in step 4 and figure out which ones have content
that will help you to best cover the content in your learning plan. Also take a
look at reviews and try to determine which resources are of the highest quality. 1
usually will look at the Amazon reviews for the books I’'m considering purchasing
and narrow it down to the best one or two books that I think will provide me the
best bang for my buck. Once you’ve completed this step, you're ready to move on
to the first module of your learning plan. You’ll repeat steps 7-10 for each learning
plan module until you’ve made it to your destination.

. Learning enough to get started - there are two common learning mistakes
that most people make, myself included. First, there’s the problem of jumping
in without knowing enough—acting too soon. Second, there’s the problem of
preparing too much before jumping in—acting too late. You want to strike a
balance between the two and learn just enough to get started, but not so much
that you don’t get to explore on your own—where you end up learning the best.
For this step, the goal is to get just enough information about the topic you're
learning about to be able to get started and to play around in the next step.

. Play around - this step is both fun and scary. It’s fun because you get to do
exactly what the step says: play around. But it’s scary because the step is com-
pletely unbounded. There are no rules. You can do whatever you want to do for
this step. It’s up to you to decide how to best execute this step. For this step,
you want to take what you learned from step 7 and actually get started. Don’t
worry about outcomes. Just explore. Implement a smaller project if you want.
Write down the questions that you have but don’t have answers for. You’ll have
the opportunity to look for the answers to those questions in the next step

. Learn enough to do something useful - take as much time as you need to thor-
oughly understand your subject matter by reading and experimenting, watching
and doing Remember, though, you still don’t have to completely consume every
single resource you gathered. Only read or watch the parts that are relevant to
what you're trying to learn right now. There are no golden stickers given out for
reading a book cover to cover. Use the resources to help you teach yourself, driven
primarily by the questions you’ve come up with by playing around. Finally, don’t
forget about your success criteria that you defined in step 3. Try to tie what you're

1 General

learning back to your ultimate goal. Each module you master should in some way
move your forward toward your final destination.

10. Teach - if you want to learn a subject in depth, if you really want to gain under-
standing about a subject, you have to teach it. There’s no other way. In reality,
you only need to be one step ahead of someone to teach them. It’s the only way to
know for sure that you’ve learned something, and it’s a great way to fill in the gaps
in your own learning as you try to explain it to others. You can teach what you’ve
learned in many different ways. You could write a blog post or create a YouTube
video. You could even talk to your spouse about what you’ve learned and explain
it to them. The important thing is that you actually take some time to take what
you’ve learned out of your own mind and organize it in a way that someone else
can understand. When you go through this process, you’ll find that there are many
things that you thought you understood that you didn’t. You’ll also begin to make
connections that you didn’t see before and simplify the information in your head as
you try to condense it down and regurgitate it. Perhaps a good way that teaching
is best approached is from a humble perspective, but with an authoritative tone.
When you teach, you don’t act like the knowledge you have makes you in some
way better or smarter than your student, but you do teach with confidence, firmly
believing what you’re saying. No one wants to learn from someone who is unsure
of what they’re saying, and they also don’t want to be made to feel stupid when
they are being taught.

So to explain it, it all starts with getting a basic understanding of what you're trying
to learn—enough to know what you don’t know. Then take that information and use
it to define the scope of what you want to learn, along with what success will look like.
Armed with that knowledge, you can find resources—and not just books—to help you
learn what you want to know. Finally, you can create your own learning plan to chart
the course you’re going to take to learn your subject and filter the materials down to just
the best ones that will help you achieve your goal. In the first 6 steps, you’ll focus
on doing enough research upfront to make sure that you know exactly what
you’re attempting to learn and how you’ll know you’re done. You do them
just once. Steps 7 - 10 are repeated for each module you end up creating in
your learning plan.

Focus

e All you have to do is to prepare all possible conditions to avoid internal and external
interruptions and resist for enough time - maybe 10 minutes.

e It is all about momentum. If you last for some time concentrating, it will be easier
and easier. After some time, you will forget about food, sleep, tiredness, and so
on. Welcome in the “zone”.

1 General

Productivity and Planning

There exist many techniques for productivity. Some of them are Getting Things Done,
Pomodoro Technique, or Don’t break the chain (Seinfeld). The true secret to produc-
tivity: small things done repeatedly over a long time period. Routine (but don’t be
absolutely obsessed with your routine, there are unpredictable things that may happen).
The following Kanban-related technique is very interesting (created by John Sonmez):

You can use software like this: https://kanbanflow.com/.

You may have columns for each day, and a special column “next week” (if you
cannot do it in a given week).

Tasks can be in states such as “not started”, “in progress”, and “done” (the smaller
task the better - something between 30 and 120 minutes for instance).

You should plan the whole quartal, month, and week. And ideally at their begin-
nings.

You may use the Pomodoro Technique throughout the day to focus on a single
task at a time and to work through the task list in Kanban board. Pomodoro
Technique:

— The basic idea is that you plan out the work you're going to do for a day.
Then you set a timer for 25 minutes and work on the first task you’ve planned.
You work only on a single task at a time and give it your complete focus for
the full 25 minutes. If you're interrupted, there are various ways of handling
the interruption, but generally you strive to not be interrupted at all. You
never want to break focus.

— At the end of the 25 minutes, you set a timer for 5 minutes and take a break.
That’s considered one pomodoro. After every four pomodori, you take a
longer break, usually 15 minutes.

— Technically, if you finish a task early, you're supposed to dedicate the re-
maining time to “overlearning.” That is, you continue to work on the task
by making small improvements or rereading material if you're trying to learn
something. Some people tend to ignore this part and move on to the next
task immediately.

— Using the Pomodoro Technique, you can start thinking about your week in
terms of a finite resource of pomodori.

— Pomodoro technique can teach you a good lesson on prioritization. If you
have just a certain amount of work (pomodori units) planned, you are extra
careful how to split what you want to achieve to pomodori.

— This technique has also psychological benefit - you can exactly control how
much time you dedicate to some task during a day. When you have a goal of
x pomodori for the day and you get that goal done - a goal you can actually

https://kanbanflow.com/

1 General

control - you know you did what you were supposed to do that day and you
can give yourself permission to feel good about it - and more importantly -
relax. And you can even more enjoy your free time. If you hit your pomodori
goal - you are free to do whatever you want that day.

— The Pomodoro Technique also forces you to focus, so when you do a full day’s
worth of work using the Pomodoro Technique, it ends up being a lot more
work than you might normally be used to.

e For being even more efficient, you may use pomodoro timer for a single task:
https://pomodoro-tracker.com/, or use can use a default one in Kanbanflow
app mentioned above.

e You can accomplish for example 10 pomodori each day (which should be about 5
hours of hard, focused work). You have to track how many pomodori you done,
and you have to set how many you want to achieve.

e Don’t forget about breaks and free weeks! Using this technique from long-run
can be unbearable for some people. Have vacation and have weeks without this
technique - do just what you feel and like to do. Or have day off every once in a
while.

e Create quotas! Create a repeatable task, define how many times it should be done,
and commit to it! The whole system falls apart if your commitment is weak, so
you have to choose attainable and maintainable quotas. Don’t commit yourself to
something you know you can’t do; otherwise you’re setting yourself up for failure.
Start with small commitments and make them bolder as you become successful at
reaching them. For example here are some quotas:

— I will exercise 5x each week.

— I will do cardio 3x each week.

I will create one blog post each week.

I will get 50 pomodori done each week.

Conway’s Law
o Any organization that designs a system will produce a design whose structure is a
copy of the organization’s communication structure.
Jimmy’s Law

o A broken, dysfunctional organization driven by meeting unhealthy goals and met-
rics will produce broken, dysfunctional systems.

https://pomodoro-tracker.com/

1 General

LeBlanc’s Law

Law

We've all looked at the mess we’ve just made and then have chosen to leave it
for another day. We’ve all felt the relief of seeing our messy program work and
deciding that a working mess is better than nothing. We’ve all said we’d go back
and clean it up later. Of course, in those days we didn’t know LeBlanc’s law:
“Later equals never.”

of Demeter

LoD is principle of least knowledge is a design guideline for developing software,
particularly object-oriented programs.!

Objects hide their data and expose operations. This means that an object should
not expose its internal structure through accessors because to do so is to expose,
rather than to hide, its internal structure.

The method should not invoke methods on objects that are returned by any of the
allowed functions. In other words, talk to friends, not to strangers.

More formally, the LoD for functions requires that a method m of an object O
may only invoke the methods of the following kinds of objects:

— O itself

— m’s parameters

— any objects created or instantiated within m

— O’s direct component objects

a global variable, accessible by O, in the scope of m

Summary

— Each unit should have only limited knowledge about other units: only units
"closely" related to the current unit.

— Each unit should only talk to its friends; don’t talk to strangers.

— Only talk to your immediate friends.

Advantages

— The advantage of following the LoD is that the resulting software tends to be
more maintainable and adaptable.

— Since objects are less dependent on the internal structure of other objects,
object containers can be changed without reworking their callers.

Disadvantages

"https://en.wikipedia.org/wiki/Law_of_Demeter

https://en.wikipedia.org/wiki/Law_of_Demeter

1 General

— Although the LoD increases the adaptiveness of a software system, it may
result in having to write many wrapper methods (or using some Facade de-
sign pattern) to propagate calls to components; in some cases, this can add
noticeable time and space overhead.

— So it depends, but Wrapper / Facade is usually good enough to do. See video
https://www.youtube.com/watch?v=FyJhALHmFXU. By using this you are
also hiding information (unnecessary details).

Very important and always true things

Everything begins and ends with a requirement. Business is the only thing that
matters. We don’t develop software for ourselves, but for clients to solve actual
existing problems.

Requirements are in constant flux. (The system is never done.)

Estimates are always wrong.

Abstractions and requirements

It is better to implement code that does not use a lot of abstraction, and to focus
on a problem, when all requirements are specified fully and clearly. Otherwise,
abstraction is a good and relatively cheap thing to do.

Solving a specific problem is easier than general problems. General problem is
much more difficult.

Solving a specific problem is easier if you know what specific problem
is. But in software, we usually don’t fully know what a specific problem is. So
from economic point of view, the best thing to do is to stay flexible.

Duck Typing

This is about determining a suitability of an object based on what it does
rather than what it is.

It is like Turing Test. Just an analogy. If it behaves as a human, then the question
whether it is actual human of not, does not matter.

Practically, in dynamically typed languages, you are not specifying types. So
we could say that Duck Typing is like polymorphism without any hierarchy. So,
according to video https://www.youtube.com/watch?v=0aIxRQSAZXE, it is said,
that we should not check types, but we should check the capability of a given
object.

https://www.youtube.com/watch?v=FyJhALHmFXU
https://www.youtube.com/watch?v=oaIxRQSAZXE

1 General

Common Anti-patterns

(during SW development?)

Create tons of functions

Use one liner as much as possible

Use recursion

Extensive use of comments

Adding code you may need but never will
Lots of variables the more the better
Start to refactor the code

Using an interface just to forcing the creation of a method. This is a bad idea.
Avoid interfaces that just force action.

Data Clamp

It is a code smell (that something is maybe wrong, not that definitely is - that is
anti-pattern).

It is when more than 1 piece of data are found together. For example start date
and end date. And you find these two in your application together very often.
Maybe it is better to create an object from them, or use data range. But this
totally depends on your application and data.

To resolve these, we may have, for instance, less arguments to our functions, which
is a good thing.

UML

— is "has-a’ (composition) ... so it is basically “using”

— is ’is-a’ (inheritance)

Professional Programmer

“Do; or do not. There is no trying.” - Yoda

“Turning pro is a mindset. If we are struggling with fear, self-sabotage, procras-
tination, self-doubt, etc., the problem is, we’re thinking like amateurs. Amateurs
don’t show up. Amateurs crap out. Amateurs let adversity defeat them. The pro
thinks differently. He shows up, he does his work, he keeps on truckin’, no matter
what.”, Steven Pressfield

2ht'cps ://www.youtube. com/watch?v=MTCYhbfSAuA&1list=UU4xKdmAXFh4ACyhpiQ_3qBw&index=57

10

https://www.youtube.com/watch?v=MTCYhbfSAuA&list=UU4xKdmAXFh4ACyhpiQ_3qBw&index=57

1 General

“How you do anything is how you do everything.”, T. Harv Eker. If you lower your
standards in one area, you’ll inadvertently find them dropping in other areas as
well. Once you’ve crossed the line of compromise, it can be difficult to go back.

Marketing is a multiplier for talent. The better marketing you have, the more it
magnifies your talent.

“If you help enough people get what they want, you will get what you want.”, Zig
Ziglar. This is the primary strategy that you should use in marketing yourself. It
will be more effective than any other technique.

Attitudes, disciplines, and actions. Taking responsibility. When a professional
makes a mistake, he cleans up the mess. That feeling is the essence of profession-
alism. Because, you see, professionalism is all about taking responsibility.

The first thing you must practice is apologizing. Apologies are necessary, but
insufficient. You cannot simply keep making the same errors over and over. As
you mature in your profession, your error rate should rapidly decrease towards the
asymptote of zero. It won’t ever get to zero, but it is your responsibility to get as
close as possible to it.

Every time QA, or worse a user, finds a problem, you should be surprised, cha-
grined, and determined to prevent it from happening again.

Every single line of code that you write should be tested. Period. However, 100%
is an asymptote. But isn’t some code hard to test? Yes, but only because that
code has been designed to be hard to test. The solution to that is to design your
code to be easy to test. And the best way to do that is to write your tests first,
before you write the code that passes them (TDD).

The fundamental assumption underlying all software projects is that software is
easy to change. If you violate this assumption by creating inflexible structures,
then you undercut the economic model that the entire industry is based on.

Why do most developers fear to make continuous changes to their code? They are
afraid they’ll break it! Why are they afraid they’ll break it? Because they don’t
have tests. It all comes back to the tests. If you have an automated suite of tests
that covers virtually 100% of the code, and if that suite of tests can be executed
quickly on a whim, then you simply will not be afraid to change the code.

Professionals spend time caring for their profession. You should plan on working
60 hours per week. The first 40 are for your employer. These 40 hours should
be spent on your employer’s problems, not on your problems. The remaining 20
are for you. During this remaining 20 hours you should be reading, practicing,
learning, and otherwise enhancing your career.

11

1 General

Perhaps you think this is a recipe for burnout. On the contrary, it is a recipe
to avoid burnout. Presumably you became a software developer because you are
passionate about software and your desire to be a professional is motivated by that
passion. During that 20 hours you should be doing those things that reinforce that
passion. Those 20 hours should be fun!

Here is a minimal list of the things that every software professional should be
conversant with: Design patterns. You ought to be able to describe all 24 patterns
in the GOF book and have a working knowledge of many of the patterns in the
POSA books.

Design principles. You should know the SOLID principles and have a good under-
standing of the component principles.

Methods. You should understand XP, Scrum, Lean, Kanban, Waterfall, Structured
Analysis, and Structured Design.

Disciplines. You should practice TDD, Object-Oriented design, Structured Pro-
gramming, Continuous Integration, and Pair Programming.

Artifacts: You should know how to use: UML, DFDs, Structure Charts, Petri
Nets, State Transition Diagrams and Tables, flow charts, and decision tables.

Hackerrank - small problems / challenges every day 10 minutes for example.

Know your domain. It is the responsibility of every software professional to under-
stand the domain of the solutions they are programming. When starting a project
in a new domain, read a book or two on the topic. Interview your customer and
users about the foundation and basics of the domain. Spend some time with the
experts, and try to understand their principles and values. It is the worst kind
of unprofessional behavior to simply code from a spec without understanding why
that spec makes sense to the business.

Your employer’s problems are your problems. You need to understand what those
problems are and work toward the best solutions. As you develop a system you
need to put yourself in your employer’s shoes and make sure that the features you
are developing are really going to address your employer’s needs.

Professionals speak truth to power. Professionals have the courage to say no to
their managers.

When your manager tells you that the login page has to be ready by tomorrow, he
is pursuing and defending one of his objectives. He’s doing his job. If you know
full well that getting the login page done by tomorrow is impossible, then you are
not doing your job if you say “OK, I’ll try.” The only way to do your job, at that
point, is to say “No, that’s impossible.” The best possible outcome is the goal that
you and your manager share. The trick is to find that goal, and that usually takes
negotiation.

12

1 General

The “fact” that it will take longer is much more important then “why”. Providing
too much detail can be an invitation for micro-management.

The most important time to say no is when the stakes are highest. The higher the
stakes, the more valuable no becomes.

By promising to try you are committing to succeed. This puts the burden on you.
If your “trying” does not lead to the desired outcome, you will have failed.

Professionals are often heroes, but not because they try to be. Professionals become
heroes when they get a job done well, on time, and on budget. By trying to become
the man of the hour, the savior of the day, such acting is not like a professional.
The temptation to be a hero and “solve the problem” is huge. What we all have
to realize is that saying yes to dropping our professional disciplines is not the way
to solve problems. Dropping those disciplines is the way you create problems.

Programming is so hard, in fact, that it is beyond the capability of one person to
do it well. No matter how skilled you are, you will certainly benefit from another
programmer’s thoughts and ideas.

It is a matter of professional ethics for senior programmers to spend time taking
younger programmers under their wing and mentoring them.

The fact that some programmers do wait for builds is tragic and indicative of
carelessness. In today’s world build times should be measured in seconds, not
minutes, and certainly not hours.

In one way or another, all professionals practice. They do this because they care
about doing the best job they possibly can. What’s more, they practice on their
own time because they realize that it is their responsibility (and not their em-
ployer’s) to keep their skills sharp. Practicing is what you do when you aren’t
getting paid. You do it so that you will be paid, and paid well.

Despite the fact that your company may have a separate QA group to test the
software, it should be the goal of the development group that QA find nothing
wrong.

When professionals make commitments, they provide hard numbers, and then
they make those numbers. However, in most cases professionals do not make
such commitments. Rather, they provide probabilistic estimates that describe the
expected completion time and the likely variance.

Professionals realize that “quick and dirty” is an oxymoron. Dirty always means
slow.

Choose disciplines that you feel comfortable following in a crisis. Then follow
them all the time. Following these disciplines is the best way to avoid getting into

13

1 General

a crisis. If you follow the discipline of Test-Driven Development in non-crisis times
but abandon it during a crisis, then you don’t really trust that TDD is helpful. If
you keep your code clean during normal times but make messes in a crisis, then
you don’t really believe that messes slow you down.

e Communicate, and avoid surprises. Nothing makes people more angry and less
rational than surprises. Surprises multiply the pressure by ten.

o Most managers want good code, even when they are obsessing about the schedule.
They may defend the schedule and requirements with passion; but that’s their job.
It’s your job to defend the code with equal passion. So it is unprofessional
for programmers to bend to the will of managers who don’t understand the risks
of making messes.

e The Flow Zone

— This is a hyper-productive state, highly focused, tunnel-vision state of con-
sciousness that programmers can get into while they write code. In this state
they feel productive. In this state they feel infallible. And so they desire to
attain that state, and often measure their self-worth by how much time they
can spend there.

— However, Robert C. Martin recommends to avoid the zone. According to
him, the problem is that you lose some of the big picture while you are in the
Zone, so you will likely make decisions that you will later have to go back and
reverse. Code written in the Zone may come out faster, but you’ll be going
back to visit it more.

— Also for him, he realized that he simply don’t code well while listening to
music. The music does not help him focus. He suspects, that what’s really
happening is that the music is helping programmers to enter the Zone.

e Interruptions

— Pairing can be very helpful as a way to deal with interruptions. Your pair
partner can hold the context of the problem at hand, while you deal with a
whatever interrupted you. When you return to your pair partner, he quickly
helps you reconstruct the mental context you had before the interruption.

— TDD is another big help. If you have a failing test, that test holds the context
of where you are. You can return to it after an interruption and continue to
make that failing test pass.

— Of course, there will be interruptions that distract you and cause you to lose
time. When they happen, remember that next time you may be the one
who needs to interrupt someone else. So the professional attitude is a polite
willingness to be helpful.

¢ Writer’s Block

14

1 General

— Sometimes the code just doesn’t come. I've had this happen to me and I've
seen it happen to others. You sit at your workstation and nothing happens.

— Often you will find other work to do. You'll read email. You’ll read tweets.
You'll look through books, or schedules, or documents. You’ll call meetings.
You'll start up conversations with others. You’ll do anything so that you
don’t have to face that workstation and watch as the code refuses to appear.

— The causes of this can be various. For example, not getting enough sleep - this
is perhaps one of the biggest obstacles. Others are worry, fear, or depression.

— Possible solution: Find a pair partner. There is a physiological change that
takes place when you work with someone.

— Creative output depends on creative input. Read science fiction for exam-
ple. Or astronomy, physics, chemistry, or mathematics. While being actively
stimulated by challenging and creative ideas, results in an almost irresistible
pressure to create something myself. Not all forms of creative input work for
me. Watching TV does not usually help me to create.

— Software development is a marathon, not a sprint. A marathon runner takes
care of her body both before and during the race. Professional programmers
conserve their energy and creativity with the same care.

— Can’t go home till you solve this problem? Oh yes you can, and you probably
should! Creativity and intelligence are fleeting states of mind. When you are
tired, they go away. If you then pound your non-functioning brain for hour
after late-night hour trying to solve a problem, you’ll simply make yourself
more tired and reduce the chance that the shower, or the car, will help you
solve the problem.

— When you are working on a problem, you sometimes get so close to it that
you can’t see all the options. You miss elegant solutions because the creative
part of your mind is suppressed by the intensity of your focus. Sometimes the
best way to solve a problem is to go home, eat dinner, watch TV, go to bed,
and then wake up the next morning and take a shower.

e Being Late
— You will be late. No matter how professional you are.

— Regularly measure your progress against your goal, and come up with three
fact-based end dates: best case, nominal case, and worst case. Be as honest
as you can about all three dates. Do not incorporate hope into your esti-
mates! Present all three numbers to your team and stakeholders. Update
these numbers daily.

e« Hope

— Hope is the project killer. Hope destroys schedules and ruins reputations.
Hope will get you into deep trouble. If the trade show is in ten days, and

15

1 General

your nominal estimate is 12, you are not going to make it. Make sure that the
team and the stakeholders understand the situation, and don’t let up until
there is a fall-back plan. Don’t let anyone else have hope.

— There is no way to rush. You can’t make yourself code faster. You can’t make
yourself solve problems faster. If you try, you’ll just slow yourself down and
make a mess that slows everyone else down, too.

¢ Overtime

— Overtime can work, and sometimes it is necessary. Sometimes you can make
an otherwise impossible date by putting in some ten-hour days, and a Satur-
day or two. But this is very risky. You are not likely to get 20% more work
done by working 20% more hours. What’s more, overtime will certainly fail
if it goes on for more than two or three weeks

— You should not agree to work overtime unless (1) you can personally afford
it, (2) it is short term, two weeks or less, and (3) your boss has a fall-back
plan in case the overtime effort fails.

e Meetings

— There are 2 truths about meetings. Often these two truths equally describe
the same meeting.

1. Meetings are necessary.
2. Meetings are huge time wasters.

— Professionals actively resist attending meetings that don’t have an immediate
and significant benefit. Even if you attend a meeting and it is boring, you
should consider leaving. You can simply ask, at an opportune moment, if
your presence is still necessary. You can explain that you can’t afford a lot
more time, and ask whether there is a way to expedite the discussion or shuffle
the agenda. The important thing to realize is that remaining in a meeting
that has become a waste of time for you, and to which you can no longer
significantly contribute, is unprofessional. You have an obligation to wisely
spend your employer’s time and money, so it is not unprofessional to choose
an appropriate moment to negotiate your exit.

« Estimates

— The problem is that we view estimates in different ways. Business likes to
view estimates as commitments. Developers like to view estimates as guesses.
The difference is profound.

— Professionals don’t make commitments unless they know they can achieve
them. It’s really as simple as that. If you are asked to commit to something
that you aren’t certain you can do, then you are honor bound to decline. If
you are asked to commit to a date that you know you can achieve, but would
require long hours, weekends, and skipped family vacations, then the choice

16

1 General

is yours; but you’d better be willing to do what it takes. Commitment is
about certainty. Other people are going to accept your commitments and
make plans based upon them.

— An estimate is a guess. No commitment is implied. No promise is made.
Missing an estimate is not in any way dishonorable. The reason we make
estimates is because we don’t know how long something will take.

— An estimate is not a number. An estimate is a distribution.

PERT (Program Evaluation and Review Technique)

— It was created in 1957, to support the U.S. Navy’s Polaris submarine project.
One of the elements of PERT is the way that estimates are calculated. The
scheme provides a very simple, but very effective way to convert estimates
into probability distributions suitable for managers.

— When you estimate a task, you provide three numbers. This is called trivariate
analysis:

x Optimistic Estimate. This number is wildly optimistic. You could only
get the task done this quickly if absolutely everything went right. Indeed,
in order for the math to work this number should have much less than a
1% chance of occurrence.

x Nominal Estimate. This is the estimate with the greatest chance of suc-
cess.

x Pessimistic Estimate. Once again this is wildly pessimistic. It should
include everything except hurricanes, nuclear war, stray black holes, and
other catastrophes. Again, the math only works if this number has much
less than a 1% chance of success.

— Given these 3 estimates, we can describe the probability distribution as fol-
lows: p = %, where 4 is the expected duration of the task. For most
tasks this will be a somewhat pessimistic number because the right-hand tail
of the distribution is longer than the left-hand tail.

— sigma is the standard deviation: s = £=9 and it is a measure of how uncer-

6
tain the task is.

— You often do not have just 1 task, but a sequence of tasks. You simply sum
all ¢ and sigmas.

— If you are a programmer of more than a few years’ experience, you’ve likely
seen projects that were estimated optimistically, and that took three to five
times longer than hoped. The simple PERT scheme just shown is one reason-
able way to help prevent setting optimistic expectations.

Wideband Delphi

— Created in 1970s and it is an estimation technique. There are many variations,
but all have the same goal - consensus.

17

1 General

— The strategy is simple. A team of people assemble, discuss a task, estimate
the task, and iterate the discussion and estimation until they reach agreement.

— There are more approaches - Flying Fingers, Planning Poker, or Affinity Es-
timation.

18

1.1

1 General

Programming Paradigms

In 1938, Alan Turing laid the foundations of what was to become computer pro-
gramming.

By 1945, Turing was writing real programs on real computers in binary language.
Assembly language came in 1940s, Fortran in 1953, and then a lot of others.

Each of the paradigms removes capabilities from the programmer. None of them
adds new capabilities. Each imposes some kind of extra discipline that is negative
in its intent. The paradigms tell us what not to do, more than they tell us what
to do. Another way to look at this issue is to recognize that each paradigm takes
something away from us.

We use polymorphism as the mechanism to cross architectural boundaries; we use
functional programming to impose discipline on the location of and access to data;
and we use structured programming as the algorithmic foundation of our modules.
Notice how well those three align with the 3 big concerns of architecture: function,
separation of components, and data management.

Functional Programming

In many ways, the concepts of functional programming predate programming itself.
It started with Alonzo Church, who in 1936 invented l-calculus while pursuing the
same mathematical problem that was motivating Alan Turing at the same time.
His l-calculus is the foundation of the LISP language, invented in 1958 by John
McCarthy. Functional programming imposes discipline upon assignment.

Variables in functional languages do not vary (all are immutable). All race
conditions, deadlock conditions, and concurrent update problems are due to mu-
table variables. You cannot have a race condition or a concurrent update problem
if no variable is ever updated. You cannot have deadlocks without mutable locks.

In other words, all the problems that we face in concurrent applications - all
the problems we face in applications that require multiple threads, and multiple
processors - cannot happen if there are no mutable variables.

The question you must be asking yourself, then, is whether immutability is practi-
cable. The answer to that question is affirmative, if you have infinite storage and
infinite processor speed. Lacking those infinite resources, the answer is a bit more
nuanced. Yes, immutability can be practicable, if certain compromises are made.

The limits of storage and processing power have been rapidly receding from view.
Nowadays it is common for processors to execute billions of instructions per second
and to have billions of bytes of RAM. The more memory we have, and the faster
our machines are, the less we need mutable state.

19

1 General

Structured Programming

Discovered by Edsger Wybe Dijkstra in 1968. Structured programming imposes
discipline on direct transfer of control.

Bo6hm and Jacopini proved, that all programs can be constructed from just three
structures: sequence, selection, and iteration. This discovery was remarkable:
The very control structures that made a module provable were the same minimum
set of control structures from which all programs can be built. Thus structured
programming was born.

Science is fundamentally different from mathematics, in that scientific theories and
laws cannot be proven correct. I cannot prove to you that Newton’s second law
of motion, F = ma, or law of gravity, are correct. I can demonstrate these laws
to you, and I can make measurements that show them correct to many decimal
places, but I cannot prove them in the sense of a mathematical proof. No matter
how many experiments I conduct or how much empirical evidence I gather, there
is always the chance that some experiment will show that those laws of motion
and gravity are incorrect. That is the nature of scientific theories and laws: They
are falsifiable but not provable. Science does not work by proving statements true,
but rather by proving statements false. Those statements that we cannot prove
false, after much effort, we deem to be true enough for our purposes. Ultimately,
we can say that mathematics is the discipline of proving provable statements true.
Science, in contrast, is the discipline of proving provable statements false.

Dijkstra once said, “Testing shows the presence, not the absence, of bugs.” In
other words, a program can be proven incorrect by a test, but it cannot be proven
correct. All that tests can do, after sufficient testing effort, is allow us to deem a
program to be correct enough for our purposes. The implications of this fact are
stunning. Software development is not a mathematical endeavor, even though it
seems to manipulate mathematical constructs. Rather, software is like a science.
We show correctness by failing to prove incorrectness, despite our best efforts.

Structured programming forces us to recursively decompose a program into a set
of small provable functions. We can then use tests to try to prove those small
provable functions incorrect. If such tests fail to prove incorrectness, then we
deem the functions to be correct enough for our purposes.

It is this ability to create falsifiable units of programming that makes structured
programming valuable today. This is the reason that modern languages do not
typically support unrestrained goto statements. Moreover, at the architectural
level, this is why we still consider functional decomposition to be one of our best
practices.

At every level, from the smallest function to the largest component, software is
like a science and, therefore, is driven by falsifiability. Software architects strive

20

1 General

to define modules, components, and services that are easily falsifiable (testable).
To do so, they employ restrictive disciplines similar to structured programming,
albeit at a much higher level.

Structured programming allows modules to be recursively decomposed into prov-
able units, which in turn means that modules can be functionally decomposed.
That is, you can take a large-scale problem statement and decompose it into high-
level functions. Each of those functions can then be decomposed into lower-level
functions, ad infinitum. Moreover, each of those decomposed functions can be
represented using the restricted control structures of structured programming.

Object-Oriented Programming

Discovered in 1966, by Ole Johan Dahl and Kristen Nygaard. They moved the
function call stack frame to the heap and invented OO. Object-oriented program-
ming imposes discipline on indirect transfer of control.

What is OO? The combination of data and function. A way to model the real
world. The nature of OO is encapsulation, inheritance, and polymorphism.

OO is the ability, through the use of polymorphism, to gain absolute control over
every source code dependency in the system. It allows the architect to create a
plugin architecture, in which modules that contain high-level policies are indepen-
dent of modules that contain low-level details. The low-level details are relegated
to plugin modules that can be deployed and developed independently from the
modules that contain high-level policies.

OO0 languages provide easy and effective encapsulation of data and function. As
a result, a line can be drawn around a cohesive set of data and functions. Outside
of that line, the data is hidden and only some of the functions are known. We
see this concept in action as the private data members and the public member
functions of a class.

Inheritance is simply the re-declaration of a group of variables and functions
within an enclosing scope. This is something C programmers were able to do
manually long before there was an OO language (it’s a simple trick, that is +-
used in single inheritance in C++).

Did we have polymorphic behavior before OO languages? Of course we did.
The bottom line is that polymorphism is an application of pointers to functions.
But this is dangerous, you have to remember the conventions (such as initialization
of a pointer and so on). Using an OO language makes polymorphism trivial and
eliminates these dangers.

Dependency Inversion

21

1 General

— Source code dependency (the inheritance relationship) between module M
and the interface I points in the opposite direction compared to the flow of
control.

— The fact that OO languages provide safe and convenient polymorphism means
that any source code dependency, no matter where it is, can be inverted
(thanks to interfaces!).

— With this approach, software architects working in systems written in OO
languages have absolute control over the direction of all source code depen-
dencies in the system. They are not constrained to align those dependencies
with the flow of control. No matter which module does the calling and which
module is called, the software architect can point the source code dependency
in either direction.

— That is power! That is the power that OO provides. That’s what
OO is really all about—at least from the architect’s point of view.

— As an example, you can rearrange the source code dependencies of your system
so that the database and the user interface (UI) depend on the business rules,
rather than the other way around. This means that the Ul and the database
can be plugins to the business rules. It means that the source code of the
business rules never mentions the Ul or the database.

— In short, when the source code in a component changes, only that component
needs to be redeployed. This is independent deployability. If the modules
in your system can be deployed independently, then they can be developed
independently by different teams. That’s independent developability.

— So, OO is the ability, through the use of polymorphism, to gain
absolute control over every source code dependency in the system.

e See SOLID principles for writing clean OOP code that make it easy for a program-
mer to develop software that is easy to maintain and extend.

22

1 General

1.2 Software Development Paradigms and Methodologies

e Software development is the process of conceiving, specifying, designing, program-
ming, documenting, testing, and bug fixing involved in creating and maintaining
applications, frameworks, or other software components.3

e In bug report, there should be at least:

— how to reproduce the bug
— what should have happened
— what actually happened

Paradigms and models
Waterfall Model

« Before agile, but it is still used in some applications.

o Requirements -> Design -> Development -> Testing -> Deployment (and big
outcome at the end).

e In Waterfall, the next phase typically cannot be started until the previous one has
been completed. The goal is to gather and analyze all the detailed requirements
early in the process so that a complete solution can be architect-ed and build with
highly predictable results.?

o Waterfall development can work well for complex or mission-critical systems or for
and for organizations that require the highest levels of fault tolerance (such as the
military or aerospace). However, projects using Waterfall processes take too long,
in many cases months or years, to produce results that can be verified by the user
and often and lacks the flexibility for today’s environment.

Agile
o Like Waterfall model, but iterative - with cumulative outcomes.

o Agile is all about working collaboratively with people who have different skills and
mindsets to achieve a common goal.’
« Manifesto®:
— Individuals and interactions over processes and tools.

— Working software over comprehensive documentation.

Shttps://en.wikipedia.org/wiki/Software_development

“https://theagileblueprint.wordpress.com/2011/03/02/comparing-waterfall-and-rational-
unified-process/

Shttps://www.testingexcellence.com/there-is-no-qa-team-in-agile/

®https://agilemanifesto.org/

23

https://en.wikipedia.org/wiki/Software_development
https://theagileblueprint.wordpress.com/2011/03/02/comparing-waterfall-and-rational-unified-process/
https://theagileblueprint.wordpress.com/2011/03/02/comparing-waterfall-and-rational-unified-process/
https://www.testingexcellence.com/there-is-no-qa-team-in-agile/
https://agilemanifesto.org/

1 General

— Customer collaboration over contract negotiation.
— Responding to change over following a plan.
That is, while there is value in the items on the right (not bold text), we value the

items on the left more (bold text).

e The most used practices in agile development are Scrum, Kanban, XP, and a lot
of others, see the next subsections below.

Methodologies and Frameworks
DevOps

o It is a set of practices that combines software development (Dev) and information-
technology operations (Ops) which aims to shorten the systems development life
cycle and provide continuous delivery with high software quality.

Lean
e Lean development can be summarized by 7 principles, very close in concept to lean
manufacturing principles:
— Eliminate waste

— Amplify learning

Decide as late as possible

Deliver as fast as possible

Empower the team
— Build integrity in
— Optimize the whole
Kanban
e It is a lean method to manage and improve work across human systems.

o Work items are visualized to give participants a view of progress and process, from
start to finish—usually via a Kanban board.

o Kanban is commonly used in software development in combination with other
methods and frameworks such as Scrum.
Rational Unified Process (RUP)

e It is an iterative software development process framework. It is use-case driven,
architecture-centric, and incremental and iterative.

e The RUP has determined a project life-cycle consisting of four phases:”

"https://techterms.com/definition/rup

24

https://techterms.com/definition/rup

1 General

— Inception phase. The idea for the project is stated. The development team
determines if the project is worth pursuing and what resources will be needed.

— FElaboration phase. The project’s architecture and required resources are fur-
ther evaluated. Developers consider possible applications of the software and
costs associated with the development.

— Construction phase. The project is developed and completed. The software
is designed, written, and tested.

— Transition phase. The software is released to the public. Final adjustments
or updates are made based on feedback from end users.

o Iterations occur in each phase. Activities in iterations are focused on one of the
four activities: gathering requirements, analyzing, designing, implementing, and
testing. Each of these activities place a more or less important role as the project
moves from phase to phase.

Scrum

o One of the goals if to create a self-organizing unit (team) so that the
team is able and willing to undertake responsibility for its work.

e Scrum master is not a team assistant. He is not responsible for product delivery
or results. He is not leader of a team, does not estimate priorities, does not
initiate discussions. Team does not communicate with product owner through
scrum master.

e Scrum master supports self-organization of a team. He helps team with obstacles,
supports to estimate common goal(s) and being team more effective. He organizes
meetings, help a company to fulfill long-term goals and strategies. In case that
there is a need for changing a process, he is an initiator of such change. He is
constantly educating himself and the others.

o Scrum has a sprint (usually 2 weeks), and during that, there are multiple meetings:

— Inbox meeting - meeting about potential US/BUGs from INBOX (or even
IDEASBOX), but only urgent/high priorities. No technical discussions. USs
should have short descriptions and if everything is clear, after this meeting,
they will be put to BACKLOG. Questions:

x Is everything clear to developer?

% Do a developer knows what to do (not how - that belongs to Backlog
meeting)?

— Backlog meeting - meeting about prepared US/BUGs from INBOX, status
PLANNABLE. Technical discussions about how to do it. Pre-defined tasks
of US:

* Development

25

1 General

* Discussion
* Testing
* Documentation
% Code-+documentation review
* QA testing
— Retrospective meeting - feelings and thoughts about the last sprint.

— Daily stand-up - daily status of everyone in team.

@

Scrum Master

Daily Scrum

SPRINT
1-4 WEEKS

2 8

Product Owner Team

&R

Sprint
Review
{3]
Sprint
Retrospective
Product Sprint Planning Sprint Finished
Backlog Meeting Backlog Work

Figure 1.1: Scrum

Extreme Programming (XP)

o It is intended to improve software quality and responsiveness to changing customer
requirements. XP is a way to improve your development process.

o As a type of agile software development, it advocates frequent 'releases" in short
development cycles, which is intended to improve productivity and introduce check-
points at which new customer requirements can be adopted.

e It is a philosophy of software development based on the values of communication,
feedback, simplicity, courage, and respect. Good relationships lead to good busi-
ness. If members of a team don’t’ care about each other and what they are doing,
XP won’t work.

26

1 General

e Do your best and then deal with the consequences. That’s extreme — you leave
yourself exposed.

¢ XP is lightweight — you only do what you need to do to create value for
the customer.

e XP can work with teams of any size. The practices need to be augmented and
altered when many people are involved.

e XP adapts to vague or rapidly changing requirements. XP shines in this area
compared to other techniques.

e Other elements of extreme programming include:

e The

programming in pairs or doing extensive code review,

unit testing of all code,

avoiding programming of features until they are actually needed,
a flat management structure,

code simplicity and clarity,

expecting changes in the customer’s requirements as time passes and the
problem is better understood,

frequent communication with the customer and among programmers,

XP always keeps the system in a deployable condition, problems are not
allowed to accumulate,

XP tests from the perspective of programmers writing tests function by func-
tion, and feature by feature,

values are universal - my values at work are exactly the same as my values in
the rest of my life,

incremental design - invest in the design of the system every day. Your design
improves as your understanding of the project improves. The most effective
time to design is in the light of experience. Refactoring a design becomes less
problematic and stressful as you continue to apply it.

shared code - collective responsibility, plus anyone on the team can improve
any part of the system at any time,

daily deployment is a goal - rapid Deployment is a step in the right direction,
energized work - overly long work hours lead to reduced efficiency and can

even remove value from a project.

methodology takes its name from the idea that the beneficial elements of

traditional software engineering practices are taken to "extreme" levels.

o As an example, code reviews are considered a beneficial practice; taken to the
extreme, code can be reviewed continuously, i.e. the practice of pair programming.

27

OKR

1 General

This is especially great for smaller teams.

Practices

Cl, CD

See the next section.

Pair Programming (PP)

Two programmers work together at one workstation. One, the driver, writes code
while the other, the observer or navigator, reviews each line of code as it is typed
in. The two programmers switch roles frequently.

Test-Driven Development (TDD)

See chapter about testing.

Behavior-Driven development (BDD)

It is an Agile software development process that encourages collaboration among
developers, QA and non-technical or business participants in a software project.

It encourages teams to use conversation and concrete examples to formalize a
shared understanding of how the application should behave.

It emerged from test-driven development (TDD). Behavior-driven development
combines the general techniques and principles of TDD with ideas from domain-
driven design and object-oriented analysis and design to provide software develop-
ment and management teams with shared tools and a shared process to collaborate
on software development.

Behavior-driven development specifies that tests of any unit of software should
be specified in terms of the desired behavior of the unit (requirements set by the
business).

It encourages collaboration between developers, QA and non-technical or business
participants in a software project.

28

1.3

1 General

Continuous Integration/Delivery/Deployment

Continuous Integration - merge high-quality code ASAP. Each integration is
verified by an automated build (including test) to detect integration errors as
quickly as possible.

Continuous Delivery - producing software in short cycles, ensuring that the
software can be reliably released at any time and, when releasing the software,
doing so manually. It aims at building, testing, and releasing software with greater
speed and frequency.

Continuous Deployment - it goes one step further than continuous delivery.
With this practice, every change that passes all stages of your production pipeline
is released on production. There’s no human intervention, and only a failed test
will prevent a new change to be deployed to production.
Why CI/CD?

— Prevent regressions (covered by tests).

— Find issues ASAP (early, low-cost feedback to devs).

— Save precious time of devs, automate testing and let machines do the jobs.

— Avoiding human mistakes (people may forgot to test something).

— Avoid merging broken code (everything merged must be tested and deploy-
able).

— It forces devs to write tests.

29

1 General

b g Nightly .7 - RC testing with real Q
QLY e Container stage 9
Code/ testing data (should be the
alpsch with real repo- (po more P same as nighly
data builds) testing)
J7 Y T y 4|> !
4 . 4 QA validation +
Container Release Candidate validation of
e s build Containers build configuration for
customers
\ J; @ T python ‘r p;thgn - é
T Manuall o
Code quality T:f:;?;; anuaty) F:gi'::gﬁ: Container stable
checks/static analysis f . repository
repository repository
o« & T o
Build Merge hor?cul Deployment on site
only in case
of very good
é ‘f test é
. iyt coverage o
Functional and TTD “| " Monitoring (revert to
Unit tests —1 tests/integration tests previous container in
(basic - mocked data) case of failure)
Developers QA Admins

|

Figure 1.2: Ideal world how CI/CD should work. Many companies are migrating to this
model. (TTD means test-driven development, typo.)

« CI/CD differences

— Martin Fowler, who first wrote about Continuous Integration together with
Kent Beck, describes CI as follows: “Continuous Integration is a software
development practice where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to multiple integrations
per day. Fach integration is verified by an automated build (including test)
to detect integration errors as quickly as possible. Many teams find that this
approach leads to significantly reduced integration problems and allows a team
to develop cohesive software more rapidly.”

— CI stands for continuous integration, whereas CD is often used interchange-
ably to signify “continuous delivery” and “continuous deployment.” Are they
both the same thing? No. Do they have a common goal? Yes.®

— Clinvolves a series of steps that are automatically performed to integrate code
from multiple sources, create a build and test. Each time a build or a set of

8https://blog.codeship.com/whats-the-difference-between-continuous-delivery-vs—-
continuous-deployment/

30

https://blog.codeship.com/whats-the-difference-between-continuous-delivery-vs-continuous-deployment/
https://blog.codeship.com/whats-the-difference-between-continuous-delivery-vs-continuous-deployment/

1 General

code passes the tests, it’s automatically deployed out to a staging environment
where further testing such as load testing and manual exploratory testing is
conducted. This process can be repeated for days depending upon the project
delivery requirements.

Continuous delivery helps you build a refined version of the software by con-
tinuously implementing fixes and feedback until finally, you decide to push
it out to production. In other words, continuous delivery involves human
decision-making around what to release to the customers, and when.

Continuous delivery is a series of practices designed to ensure that code can
be rapidly and safely deployed to production by delivering every change to a
production-like environment and ensuring business applications and services
function as expected through rigorous automated testing. It doesn’t mean
every change is deployed to production ASAP.

x Unit test -> Platform Test -> Deliver to Staging -> Application Accep-
tance Tests -> Deploy to Production -> Post deploy Tests

x All previous steps are performed automatically in Continuous Deploy-
ment; in Continuous Delivery, Application Acceptance Tests -> Deploy
to Production step is done manually.

Continuous deployment - every change goes through an automated pipeline
and a working version of the application is automatically pushed to produc-
tion. It usually involves a production-like staging area with a mandatory time
lag in the final release. This lag involves reviewing and manually accepting the
changes in the code before releasing it to production. In contrast, continuous
deployment does not require a staging area for code changes to be manually
reviewed and verified. This is because automated testing is integrated early
in the development process and continues throughout all the phases of the
release.

There are some exceptions where the concepts of delivery and deployment
aren’=;t as relevant as they are elsewhere; for instance, if you’ve contributed
to a library or created an artifact, you are unlikely to deploy it on a running
system. In other words, there is no deployment phase. You simply push your
code into a repository for other applications to consume.

Jenkins and Ansible are popular automation tools for CI/CD in the market.
To automate deployments, it is needed to manage:

x Application packaging

*

Release versioning

*

Database updates

*

Server configuration management

*

Calendaring

31

1 General

* Roll-forward and rollback
* Security access

x Auditing

— Continuous delivery, when rightly coupled with continuous deployment, strength-

ens the foundation of a DevOps pipeline and is core to agile DevOps initia-
tives.

e Container is a running image. There can be several containers from 1
image.

¢ Possible ideal scenario?

1.
2.
3.

Dev creates a patch.
He creates a new MR.

Gitlab CI pipeline fires up.

a) Static code analysis.
b) Unit tests.
c

d

[§]

)
) Integration tests.

) Docker image is built.

) System tests with other services.

f) Docker image pushed to internal registry.

When the previous step is successful, dev/reviewer manually plays with con-
tainer in dev environment. If everything went well, MR is approved and
merged.

— Container rebuild/mark container image as RC version (this depends on
merging strategy).

— Kubernetes deploy a new RC image to staging environment (triggered by
devs or automatically).

. Container is monitored in staging environment.

— Container or a feature is tested and monitored in staging environment by

devs/QEs.

— If bug is found, must be fixed and new image is deployed to stage envi-
ronment.

— If critical malfunction happen, container can be even automatically re-
verted to previous version by Kubernetes.

— If image works as expected, it is marked as stable.

(Docker) Image is ready for production.

— Image is labeled by devs as production version.

32

1 General

— Admins get notification from developers/QEs that a particular image is
ready to be deployed.

— Admins press a “magic button” in docker management system on the top
of Kubernetes.

x If critical malfunction is detected by monitoring, image is automati-
cally rollbacked to the latest working version.

x Deployed image is monitored by monitoring system, if suspicious ac-
tivity is happening (or revert is requested from devs), admins can
simply revert to older version of image (magic revert button, no su-
percomplex downgrades of packages).

How to enable CI/CD?

— GitLab - selfhosted, specified in file .gitlab-ci.yml. Test environment is
isolated, containers are destroyed after test; a new testing environment is
always created. This CI pipeline may contain several stages - from fastest to
slowest and more expensive tests (executed if previous stages passed).

— GitHub + Travis CI - this CI may need an extra AWS instance for more
complicated tests.

— Jenkins - not the best one, many things must be implemented manually.

— Phabricator - this CI is not that mature as in GitLab case.
CD may require to containerize services first and this requires a big test coverage.

Build system - for building “build artifacts” (.deb, pypi) - so that the most
things are in packages, which will make deployment easier and less error prone.
Alternative = containers, but they are not for everything.
Why containers?
— Containers are easy for deployment, they make CD easier.
— Containers are Linux processes with:
x constrained resources - cgroups
* isolations - namespaces
x security - Seccomp, Capabilities, SELinux
Steps:
1. build - buildah (run builds in an isolated container, run without root)
2. run & develop locally - podman

3. store/share - skopeo (run without root, move images between environ-
ments, inspect remote images)

4. run in a production cluster - CRI-O (read-only container filesystem, user
namespaces - soon in Kubernetes as well, enable fewer capabilities)

33

1 General

— Provide isolation against outside influences like:
* incompatible update of packages on OS
* incompatible versions of packages, incompatible configurations
x allows to mix various package versions per service

* gives abstraction on service (no need of knowledge what is happening
inside for deployment)

— Provide consistency - the same image will be tested and deployed (no last
moment surprises during deployment).

— Containers are versioned, if critical issue is found on production, stop con-
tainer and put back an older one.

— Containers can be updated separately - lowering downtime, asynchronous
releases.

— Containers are technology of virtualization.

— Popular technologies are Docker, Kubernetes, OpenShift, ...

Buildah 4 Ansible

Combo for building container images (+ansible plugins).

e ansible-bender - wraps the functionality around Buildah 4+ ansible__playbook. If 1
want to see logs from previous builds for example. It has configurable layering and
caching.

e Perhaps see blog.tomecek.net

Docker

e Docker utilizes Linux containers.

— Linux containers, commonly referred to as LXC, originated in 2008, and they
rely on the Linux kernel cgroups? functionality that originated in Linux kernel
version 2.6.24.

— Linux containers themselves are an operating system virtualization method
that you can utilize to run multiple isolated Linux systems on a single host.
They all utilize the kernel version that is running on the host on which the
containers are running.

o Docker relies on using the host OS’s Linux kernel for the OS it was built on. For
this reason, you can have almost any Linux OS as your host operating system and
be able to layer other OSes on top of the host. Another benefit of Docker is the

9cgroups is a Linux kernel feature that limits, accounts for, and isolates the resource usage (CPU,
memory, disk I/O, network, etc.) of a collection of processes.

34

blog.tomecek.net

1 General

size of images when they are born. They do not contain the largest piece: the
kernel or the operating system. This makes them incredibly small, compact, and
easy to ship.

e Provides isolation of applications and their dependencies from host machine.

o It is not a VM, it shares kernel of host machine, but processes are very isolated
from host.

o Images are small, minimal "Linux alpine" docker image has 5MB (the smallest VM
image has much more).

e Once docker image is build, the same image will be tested, deployed to staging and
then to production. Developers are responsible for proper dependencies installation
and image build.

o CI tests in GitLab can be powered by Docker.
e Docker is likely to support Rootless mode in the future.

e When people say “Docker” they typically mean Docker Engine, the client-server
application made up of the Docker daemon, a REST API that specifies interfaces
for interacting with the daemon, and a command line interface (CLI) client that
talks to the daemon (through the REST API wrapper). Docker Engine accepts
docker commands from the CLI, such as docker run <image>.

e Dockerd

— Docker build, it uses dockerd REST API to transfer build context as a tarball;
image is built completely remotely by the engine, parses Dockerfile.

— Imagebuilder - parses Dockerfile to determier images) using the Docker com-
mands. The command that we will be looking at is docker search. With
the docker search command build steps Source-to-image - uses one of many
builder images. Uses docker client library to start builder image using a re-
mote image and to commit the builder container using also remote engine.
Library and CLI engine.

e Except Docker CLI, there are the following features:

— Docker registries - there are 3 options to store docker images: Docker Hub,
Docker Trusted Registry, and Docker Registry.

— Docker Machine'? - tool that you can utilize to set up and manage your
Docker hosts. You can install and run Docker on Mac or Windows, provision
and manage multiple remote Docker hosts, or provision Swarm clusters. If
you want an efficient way to provision multiple Docker hosts on a network, in
the cloud or even locally, you need Docker Machine.

Ohttps://docs.docker. com/machine/overview/

35

https://docs.docker.com/machine/overview/

1 General

— Docker Compose - another tool in the Docker ecosystem that can be used
to create multiple containers with a single command. This allows you to spin
up application stacks that may include some web servers, a database server,
and/or file servers as well. Docker Compose utilizes a docker-compose.yml
file to start up and configure all the containers that you have specified.

— Docker Swarm - it allows you to create and manage clustered Docker
servers. Swarm can be used to disperse containers across multiple hosts.
It also has the ability to scale containers as well. The installation for Docker
Swarm actually launches a container that is used as the Swarm Manager
master to communicate to all the nodes in a Swarm cluster.

— Docker UCP (Universal Control Plane) - is a solution for Docker that en-
ables you to control various aspects of your Docker environment through a
web interface.

Podman

CLI tool for replacing Docker daemon in most use cases.
Rootless storage under the user home dir. No CLI diff between root and user.
Each container runs in its own user namespace.

Podman pods - similar concept to Kubernetes pods. Group of containers that
share resources and deploy as a single unit.

Kubernetes

Created by Google. Orchestration tool for running docker containers. GitLab
supports Kubernetes integration.

Dynamically load-balance resources, migrates containers to less utilized servers.
Makes deployment and management of containers easier.

Configure, which containers should communicate between themselves at 1 place.
Deploy everything on 1 place on multiple virtual machines.

Scalability - distribute containers over multiple Vms, increase performance, deploy
more containers.

For a breaf vocabulary, there is a nice video'!

Parts:

— Master: contains 14+ Replication Controllers. They communicate with Pods.

"https://www.youtube . com/watch?v=1xo-0gCVhTU

36

https://www.youtube.com/watch?v=1xo-0gCVhTU

1 General

Node: Kubelet (it is an instance of a computer, it is application that is run-
ning); It runs Pods and communicates with Master.

Pod: Runs 1+ containers and exists on a Node.
Service: Handles requests and it is usually a load balancer.

Deployment: Defines desired state - Kubernetes handles the rest.

e CRI-O - Container Runtime Interface - client-server Kubernetes runtime for run-
ning containers in a cluster. It aims at replacing Docker and it’s set to be the
default runtime when running OpenShift. It looks heavily tested! For more infor-
mation, see https://medium.com/cri-o.

e Kubeflow - ML + Kubernetes. Kuberflow aggregates all the tools like TF, Pytorch
etc. Anywhere you run Kubernetes, you should be able to run Kuberflow.

o Kubernetes Operators

Operator is a controller service that actively manages the full lifecycle of an
application on Kubernetes. A mature Operator can deploy, upgrade, backup,
repair, scale, and reconfigure an application that it manages.

Automated software managers for Kubernetes clusters - application-specific
controllers that extends Kubernetes API to create, configure, manage in-
stances of complex stateful applications.

Operators are Kubernetes agents that know how to deploy, scale, manage,
backup, and even upgrade complex, stateful applications.

They are good for: databases, file, block and object storage, applications with
their own notion of a “cluster”, apps for distribution on Kubernetes.

Nice tutorials: https://learn.openshift.com/operatorframework

There exist a lot of operators in the wild: https://github.com/operator-
framework/awesome-operators

o Kubernetes vulnerabilities are of 3 types:

Cluster vulnerabilities - misconfiguration, general security primitives (bad

network policies, admin role misuse, ...), pod spec files, data dir access and
ownership rights.

Workload vulnerabilities - privileged containers/applications, vulnerable ap-

plication code, missing seccomp profiles, unnecessary syscall capabilities.

Wrong tools for the job - 3rd party products / solutions not made for for

containers. Unfortunately you have to rely on vendors.

See slides on https://devconfcz2019.sched. com/event/JcoQ/boost-your-
security-and-resiliency-in-kubernetes

37

https://medium.com/cri-o
https://learn.openshift.com/operatorframework
https://github.com/operator-framework/awesome-operators
https://github.com/operator-framework/awesome-operators
https://devconfcz2019.sched.com/event/JcoQ/boost-your-security-and-resiliency-in-kubernetes
https://devconfcz2019.sched.com/event/JcoQ/boost-your-security-and-resiliency-in-kubernetes

1 General

OpenShift

« Openshift is a family of containerization software developed by Red Hat.!?

o It’s based on top of Docker containers and the Kubernetes container orchestrator
for enterprise application development and deployment.

« Openshift should have certificates. See openshift-acme'3: letting it provision free
certificates from Let’s Encrypt (Openshift and Kubernetes cluster)
e ci-operator

— This automates and simplifies the process of building and testing OpenShift
component images.

— Mainly intended to be run inside a Pod in a cluster, triggered by the Prow CI
infrastructure, but it is also possible to run it as a CLI tool on a developer
laptop.

Serverless + KNative

e Serverless
— It can simplify the process of deploying code into production.
— FEvent -> Function -> Result

— History: AWS Lambda (2014)-> OpenWhisk (Fn project, Serverless Frame-
work) -> Googld Cloud Functions (Azure Functions, Iron Functions, Open-
FaaS) -> Oracle Fn (Funktion, Firebase Cloud Functions, Riff) -> Openshift
Cloud Functions (KNative, Google loud Functions GA)

o KNative

— It extends Kubernetes to provide a set of middleware components for build-
ing modern source-centric, container based apps that can run anywhere -
premises, cloud, 3rd party data-center.

2https://openshift.io/

Bhttps://github.com/tnozicka/openshift-acme

Yhttps://medium. com/@pkerrison/pizza-as-a-service-2-0-5085cd4c365e and
https://blog.openshift.com/knative-serving-your-serverless-services/

38

https://openshift.io/
https://github.com/tnozicka/openshift-acme
https://medium.com/@pkerrison/pizza-as-a-service-2-0-5085cd4c365e
https://blog.openshift.com/knative-serving-your-serverless-services/

1.4

1 General

Concurrency

Concurrency can sometimes improve performance, but only when there is a lot
of wait time that can be shared between multiple threads or multiple processors.
Neither situation is trivial.

The design of a concurrent algorithm can be remarkably different from the design
of a single-threaded system. The decoupling of what from when usually has a
huge effect on the structure of the system. Also, concurrency often requires a
fundamental change in design strategy.

Concurrency incurs some overhead, both in performance as well as writing addi-
tional code. Correct concurrency is complex, even for simple problems.

Concurrency bugs aren’t usually repeatable, so they are often ignored as one-offs
instead of the true defects they are.

Keep your concurrency-related code separate from other code. Attempt to par-
tition data into independent subsets than can be operated on by independent
threads, possibly in different processors.

Get our non-threaded code working first. Do not try to chase down non-threading
bugs and threading bugs at the same time. Make sure your code works outside of
threads.

Make your thread-based code especially pluggable and tunable, so that you can
run it in various configurations.

Run with more threads than processors. Things happen when the system switches
between tasks. To encourage task swapping, run with more threads than processors
or cores. The more frequently your tasks swap, the more likely you’ll encounter
code that is missing a critical section or causes deadlock.

Run your threaded code on all target platforms early and often. Multi-threaded
code behaves differently in different environments. You should run your tests in
every potential deployment environment.

Learn how to find regions of code that must be locked and lock them. Do not lock
regions of code that do not need to be locked.

Keep the amount of shared objects and the scope of the sharing as narrow as
possible.

Basic definitions

Process

A process can be thought of as an instance of a program in execution.

39

1 General
o A process is an independent entity to which system resources (e.g., CPU time and
memory) are allocated.

o Each process is executed in a separate address space, and one process cannot access
the variables and data structures of another process. If a process wishes to access
another process’s resources, inter-process communications have to be used. These
include pipes, files, sockets, and other forms.

Thread

o A thread exists within a process and shares the process’s resources (including its
heap space).

e Multiple threads within the same process will share the same heap space. This is
very different from processes, which cannot directly access the memory of another
process. Each thread still has its own registers and its own stack, but other threads
can read and write the heap memory.

o A thread is a particular execution path of a process. When one thread modifies a
process resource, the change is immediately visible to sibling threads.

Reentrant lock

e A lock that can be acquired in one method and released in another.

Semaphore

o An implementation of the classic synchronization mechanism, a lock with a count.

Bound resources

e Resources of a fixed size or number used in a concurrent environment. Examples
include database connections and fixed-size read/write buffers.

Starvation

e One thread or a group of threads is prohibited from proceeding for an excessively
long time or forever. For example, always letting fast-running threads through
first could starve out longer running threads if there is no end to the fast-running
threads.

Livelock

e Threads in lockstep, each trying to do work but finding another “in the way.” Due
to resonance, threads continue trying to make progress but are unable to for an
excessively long time - or forever.

40

Deadlock

1 General

o Two or more threads waiting for each other to finish. Each thread has a resource
that the other thread requires and neither can finish until it gets the other resource.
There are 4 conditions required for deadlock to occur. All 4 of these conditions
must hold for deadlock to be possible. Break any one of these conditions and
deadlock is not possible:

e Mutual Exclusion

Mutual exclusion occurs when multiple threads need to use the same resources
and those resources a) cannot be used by multiple threads at the same time,
and b) are limited in number. A common example of such a resource is a
database connection, a file open for write, a record lock, or a semaphore. So
mutual exclusion means that only 1 process or thread can access a
resource at a given time. (Or, more accurately, there is limited access to
a resource. A deadlock could also occur if a resource has limited quantity.)

Breaking Mutual Exclusion:
x Using resources that allow simultaneous use, for example, AtomicInteger.

* Increasing the number of resources such that it equals or exceeds the
number of competing threads.

* Checking that all your resources are free before seizing any.

Unfortunately, most resources are limited in number and don’t allow simul-
taneous use. And it’s not uncommon for the identity of the second resource
to be predicated on the results of operating on the first.

e Lock & Wait

Once a thread acquires a resource, it will not release the resource until it has
acquired all of the other resources it requires and has completed its work. So
this is a situation where processes that already hold a resource can request
additional resources, without relinquishing their current resources.

Breaking Lock & Wait:

x Check each resource before you seize it, and release all resources and start
over if you run into one that’s busy.

This approach introduces several potential problems:

x Starvation. One thread keeps being unable to acquire the resources it
needs (maybe it has a unique combination of resources that seldom all
become available). This leads to low CPU utilization.

* Livelock. Several threads might get into lockstep and all acquire 1 re-
source and then release 1 resource, over and over again. This is especially
likely with simplistic CPU scheduling algorithms (think embedded de-
vices or simplistic hand-written thread balancing algorithms). This leads
to high and useless CPU utilization.

41

1 General

e No preemption
— One thread cannot take resources away from another thread. Once a thread

holds a resource, the only way for another thread to get it is for the holding
thread to release it.

— Breaking Preemption:

x Allow threads to take resources away from other threads. This is usually
done through a simple request mechanism.

* When a thread discovers that a resource is busy, it asks the owner to
release it. If the owner is also waiting for some other resource, it releases
them all and starts over. Managing all those requests can be tricky.

¢ Circular Wait

— Imagine 2 threads, T1 and T2, and 2 resources, R1 and R2. T1 has R1, T2
has R2. T1 also requires R2, and T2 also requires R1.

— Breaking Circular Wait:

* This is the most common approach to preventing deadlock. For
most systems it requires no more than a simple convention agreed to by
all parties.

* From the previous example, by simply forcing both Thread 1 and Thread
2 to allocate resources in the same order makes circular wait
impossible.

x More generally, if all threads can agree on a global ordering of re-
sources and if they all allocate resources in that order, then deadlock is
impossible.

Execution models used in concurrent programming

Most concurrent problems you will likely encounter will be some variation of these 3
problems:

e Producer-Consumer

— One or more producer threads create some work and place it in a buffer or
queue. One or more consumer threads acquire that work from the queue and
complete it.

— The queue between the producers and consumers is a bound resource. This
means producers must wait for free space in the queue before writing and
consumers must wait until there is something in the queue to consume.

— Coordination between the producers and consumers via the queue involves
producers and consumers signaling each other. The producers write to the
queue and signal that the queue is no longer empty. Consumers read from

42

1 General

the queue and signal that the queue is no longer full. Both potentially wait
to be notified when they can continue.

e Readers-Writers

— When you have a shared resource that primarily serves as a source of infor-
mation for readers, but which is occasionally updated by writers, throughput
is an issue.

— Emphasizing throughput can cause starvation and the accumulation of stale
information. Allowing updates can impact throughput. Coordinating readers
so they do not read something a writer is updating and vice versa is a tough
balancing act. Writers tend to block many readers for a long period of time,
thus causing throughput issues.

— The challenge is to balance the needs of both readers and writers to satisfy
correct operation, provide reasonable throughput and avoiding starvation.

e Dining Philosophers

— Imagine a number of philosophers sitting around a circular table. A fork is
placed to the left of each philosopher. There is a big bowl of spaghetti in
the center of the table. The philosophers spend their time thinking unless
they get hungry. Once hungry, they pick up the forks on either side of them
and eat. A philosopher cannot eat unless he is holding two forks. If the
philosopher to his right or left is already using one of the forks he needs, he
must wait until that philosopher finishes eating and puts the forks back down.
Once a philosopher eats, he puts both his forks back down on the table and
waits until he is hungry again.

— Replace philosophers with threads and forks with resources and this problem
is similar to many enterprise applications in which processes compete for
resources. Unless carefully designed, systems that compete in this way can
experience deadlock, livelock, throughput, and efliciency degradation.

43

2 Testing

e Tests are as important to the health of a project as the production code
is. Perhaps they are even more important, because tests preserve and enhance the
flexibility, maintainability, and reusability of the production code. So keep your
tests constantly clean. Work to make them expressive and succinct. Invent testing
APIs that act as domain-specific language that helps you write the tests. If you
let the tests rot, then your code will rot too. Keep your tests clean.

« What makes a clean test? Three things. Readability, readability, and readability.
Readability is perhaps even more important in unit tests than it is in production
code. What makes tests readable? The same thing that makes all code readable:
clarity, simplicity, and density of expression. In a test you want to say a lot with
as few expressions as possible.

e There are multiple types of testing and for each one there must be clean separation
between them. Each category also requires different setup and process how to tests.

¢ Besides the following 3 types, there should be also continuous code inspection
- static code analyzers like pylint (or even better - coala, which has multiple
inspection tools integrated and usable as docker image - 90+ analyzers including
python, bash, json, yaml, ...); each commit is analyzed automatically with that.
These are cheap and fast checks.

e More tests devs produce, the better will CI works, the easier CD.

o “It is important to note that testing is not a phase, it’s an activity and that testing
starts from the very beginning of the development process, right from when the
user stories are written.”!

o Tests should be easily executable, writable, readable, automation friendly, isolated,
and consistent across a project (the same structure and framework). They should
be as close to developers as possible — devs let to run any test they need in short
time as well as they must get feedback as soon as possible.

e The build-operate-check pattern defines the structure of the tests. Each of the tests
is clearly split into 3 parts. The first part builds up the test data, the second part
operates on that test data, and the third part checks that the operation yielded
the expected results.

1https ://www.testingexcellence.com/how-to-setup-a-qa-function-from-scratch-for-agile-
projects/

44

https://www.testingexcellence.com/how-to-setup-a-qa-function-from-scratch-for-agile-projects/
https://www.testingexcellence.com/how-to-setup-a-qa-function-from-scratch-for-agile-projects/

2 Testing

e Golden Rule of API Design fits in: It’s not enough to write tests for an API you
develop; you have to write unit tests for code that uses your API.

o Tests are also independently deployable. In fact, most of the time they are deployed
in test systems, rather than in production systems. Tests are the most isolated
system component.

e QA - Quality Assurance, QE - Quality Engineer(ing).

— Developers should be responsible for testing their own code by writing unittests
and easier functional tests.

— QEs must know about features, devs must know which parts of code are QEs
suffering.

— QEs must tightly collaborate with developers and vice versa and should be
rather mixed together in 1 room).

— QE responsibilities
« Thinking about project from customer POW (high level design review).

x Testing product from customer POW — QA doesn’t care about imple-
mentation details, but functionality.

% Maintain internal test frameworks (with developers).
* Maintain CI automation, tools (with developers).
* RC testing, testing deployment, upgrades.

« Tests suites: system tests, complex integration tests. Also (if needed)
additional testing: performance, security, ...

* Sharing knowledge about proper testing with developers.

x* BUT NOT: unit testing, designing or coding features, bug-fixing prod-
uct, code review, simple integration tests, knowledge of implementation
details.

Test-Driven-Development

e There are 3 laws of TDD:

— First Law - You may not write production code until you have written a
failing unit test.

— Second Law - You may not write more of a unit test than is sufficient to fail,
and not compiling is failing.

— Third Law - You may not write more production code than is sufficient to
pass the currently failing test. This law is also known as "fake it ’til you
make it". It is a seemingly idiotic practice with massive benefits. See https:
//www.youtube.com/watch?v=PhiXo5CW;jYU.

45

https://www.youtube.com/watch?v=PhiXo5CWjYU
https://www.youtube.com/watch?v=PhiXo5CWjYU

2 Testing

* It helps you achieve and maintain flow. TDD helps you to achieve initial
momentum and not getting stack thinking about the details of perfect
implementation.

* It helps you increase test coverage.

* You might incrementally move toward better algorithms.

e These 3 laws lock you into a cycle that is perhaps 30 seconds long. The tests and
the production code are written together, with the tests just a few seconds ahead
of the production code. If we work this way, we will write dozens of tests every
day, hundreds of tests every month, and thousands of tests every year. If we work
this way, those tests will cover virtually all of our production code.

e TDD cycle has 3 parts - red, green, refactor. The first thing to do is to write the
simplest possible implementation (and not just one silly use case).

e You begin by writing a small portion of a unit test. But within a few seconds
you must mention the name of some class or function you have not written yet,
thereby causing the unit test to fail to compile. So you must write production code
that makes the test compile. But you can’t write any more than that, so you start
writing more unit test code.

e One of the most powerful benefits of TDD is that when you have a suite of tests
that you trust, then you lose all fear of making changes. When you see bad code,
you simply clean it on the spot.

e The tests you write after the fact are defense. The tests you write first are offense.
After-the-fact tests are written by someone who is already vested in the code and
already knows how the problem was solved. There’s just no way those tests can
be anywhere near as incisive as tests written first.

e« TDD is a discipline that enhances certainty, courage, defect reduction, documen-
tation, and design.

e There are times when following the 3 laws is simply impractical or inappropriate.
These situations are rare, but they exist. INo professional developer should
ever follow a discipline when that discipline does more harm than good.

F.I.LR.S.T.

Clean tests follow these 5 rules:

o Fast. Tests should be fast. They should run quickly. When tests run slow, you
won’t want to run them frequently. If you don’t run them frequently, you won’t
find problems early enough to fix them easily. You won’t feel as free to clean up
the code. Eventually the code will begin to rot.

46

2 Testing

e Independent. Tests should not depend on each other. One test should not set up
the conditions for the next test. You should be able to run each test independently
and run the tests in any order you like.

« Repeatable. If your tests aren’t repeatable in any environment, then you’ll always
have an excuse for why they fail. You’'ll also find yourself unable to run the tests
when the environment isn’t available

o Self-validating. The tests should have a boolean output. Either they pass or fail.
You should not have to read through a log file to tell whether the tests pass. You
should not have to manually compare two different text files to see whether the
tests pass. If the tests aren’t self-validating, then failure can become subjective
and running the tests can require a long manual evaluation.

e« Timely. The tests need to be written in a timely fashion. Unit tests should be
written just before the production code that makes them pass. If you write tests
after the production code, then you may find the production code to be hard to
test. You may decide that some production code is too hard to test. You may not
design the production code to be testable.

Test Hierarchy

More details about each type of tests is written in the following sections.

M

Exploratory

System tests
10% gui

Integration tests
20% api

Component tests
50% api

Unit tests
100% XUnit

Figure 2.1: Test hierarchy including a coverage.

47

2 Testing

2.1 Unit Tests

o Service is not running, parts of code are tested (using mocking data, no database,
I/O, or network connections).

e Testing of functions, methods, objects, classes => units.
o Should be the fastest test suite.

¢ Run by developers during development of code.

e Should have the biggest coverage.

e It is unit tests that keep our code flexible, maintainable, and reusable. The reason
is simple. If you have tests, you do not fear making changes to the code! Without
tests every change is a possible bug. No matter how flexible your architecture is,
no matter how nicely partitioned your design, without tests you will be reluctant
to make changes because of the fear that you will introduce undetected bugs. Tests
enable change.

o At the bottom of the test pyramid (figure above) are the unit tests. These tests
are written by programmers, for programmers, in the programming language of
the system. The intent of these tests is to specify the system at the lowest level.
Developers write these tests before writing production code as a way to specify
what they are about to write.

o Unit tests provide as close to 100% coverage as is practical. Generally this number
should be somewhere in the 90s.

48

2.2

2 Testing

Component Tests

These are some of the acceptance tests. Generally they are written against indi-
vidual components of the system. The components of the system encapsulate the
business rules, so the tests for those components are the acceptance tests for those
business rules.

A component test wraps a component. It passes input data into the component
and gathers output data from it. It tests that the output matches the input. Any
other system components are decoupled from the test using appropriate mocking
and test-doubling techniques.

Component tests are written by QA with assistance from development.

Component tests cover roughly half the system. They are directed more to-
wards happy-path situations and very obvious corner, boundary, and alternate-
path cases. The vast majority of unhappy-path cases are covered by unit tests and
are meaningless at the level of component tests.

49

2.3

2 Testing

Integration Tests

The whole set of services is running and being tested how cooperates. Additional
services may be required, such as database or network.

Should be run after successful unit testing. Usually needs more resources than unit
testing.
Docker may improve setup of integration tests:

— Isolated test, multiple isolated tests can be run in parallel.

— Pre-configured docker images with services/DB.

— Docker-compose: allows running multiple containers in one test setup.

Just provide test data and mount container to your git repo.

The same containers can be used for CI/QA /developers (no duplication).

With all mentioned above: it should be possible to run integration tests just
by 1 command, no extra effort from devel side.

These tests only have meaning for larger systems that have many components.
These tests assemble groups of components and test how well they communicate
with each other. The other components of the system are decoupled as usual with
appropriate mocks and test-doubles.

They do not test business rules. Rather, they test how well the assembly of com-
ponents dances together. They are plumbing tests that make sure that the com-
ponents are properly connected and can clearly communicate with each other.

Integration tests are typically written by the system architects, or lead designers,
of the system. The tests ensure that the architectural structure of the system is
sound. It is at this level that we might see performance and throughput tests.

Integration tests are typically written in the same language and environment as
component tests. They are typically not executed as part of the CI suite, because
they often have longer run-times. Instead, these tests are run periodically (nightly,
weekly, etc.) as deemed necessary by their authors.

Once this stage is done, usually Smoke Testing is performed. These are very
short tests (either unit of functional tests), that will determine whether a given
system (or a component) is ready for the next stage of testing. If all parts of
the application or component are implemented and runnable. They focus only
on the main functionality, that should be pretty much stable. They are mostly
automatized. The next phase once this is successful, is System Testing.

Difference between unit and integration tests®:

2https://www.youtube.com/watch?v=uCxL7NGEohI

50

https://www.youtube.com/watch?v=uCxL7NGEohI

2 Testing

— Integrating with anything non-deterministic means your test must be consid-
ered as integration test.

— Integrating with deterministic parts of your language (such as standard li-
brary) does not necessarily make your test an integration test.

Integrating with any 3rd party code makes your test an integration test. (1)

— Integrating with any other class/module that you own makes your test an
integration test.

If you want to turn your integration test into unit test, maybe a solution is to use
dependency injection.

o1

2.4

2 Testing

System Tests

Service is running and is tested as 1 piece. These tests should test only 1 service
at once.

Testing the product itself, testing how all subsystems cooperate (like production
deployment).

This is the final phase of testing, the most resources are spent here.

These are automated tests that execute against the entire integrated system. They
are the ultimate integration tests. They do not test business rules directly. Rather,
they test that the system has been wired together correctly and its parts inter-
operate according to plan. We would expect to see throughput and performance
tests in this suite.

These tests are written by the system architects and technical leads. Typically
they are written in the same language and environment as integration tests for the
Ul They are executed relatively infrequently depending on their duration, but the
more frequently the better.

System tests cover perhaps 10% of the system. This is because their intent is not
to ensure correct system behavior, but correct system construction. The correct
behavior of the underlying code and components have already been tested in the
lower layers of the pyramid.

52

2.5

2 Testing

Exploratory Tests

This is where humans put their hands on the keyboards and their eyes on the
screens. These tests are not automated, nor are they scripted. The intent of these
tests is to explore the system for unexpected behaviors while confirming expected
behaviors.

The goal is not coverage. We are not going to prove out every business rule
and every execution pathway with these tests. Rather, the goal is to ensure that
the system behaves well under human operation and to creatively find as many
“peculiarities” as possible.

It is possible to invest day or two of “bug hunting” in which as many people as
possible, including managers, secretaries, programmers, testers, and tech writers,
“bang” on the system to see if they can make it break.

Exploratory testing is often thought of as a black box testing technique. It may
cover also a quick smoke testing.

93

2.6

2 Testing

Specialized Tests

These tests are not always implemented. Here belong acceptance tests, functional tests,
and non-functional tests.

Acceptance Tests

These tests are written by a collaboration of the stakeholders and the programmers in
order to define when a requirement is done.

The word "done" means all code written, all tests pass, QA and the stakeholders
have accepted. Done. But how can you get this level of done-ness and still make
quick progress from iteration to iteration? You create a set of automated tests
that, when they pass, meet all of the above criterial When the acceptance tests
for your feature pass, you are done.

The purpose of acceptance tests is communication, clarity, and precision. By
agreeing to them, the developers, stakeholders, and testers all understand what the
plan for the system behavior is. Achieving this kind of clarity is the responsibility
of all parties.

Acceptance tests must always be automated (because of cost). Don’t look at these
tests as extra work. Look at them as massive time and money savers. These tests
will prevent you from implementing the wrong system and will allow you to know
when you are done.

In an ideal world, the stakeholders and QA would collaborate to write these tests,
and developers would review them for consistency. In the real world, stakeholders
seldom have the time or inclination to dive into the required level of detail. So they
often delegate the responsibility to business analysts, QA, or even developers. If it
turns out that developers must write these tests, then take care that the developer
who writes the test is not the same as the developer who implements the tested
feature.

Unit tests dig into the guts of the system making calls to methods in particu-
lar classes. Acceptance tests invoke the system much farther out, at the API or
sometimes even Ul level. So the execution pathways that these tests take are very
different.

Keep the GUI tests to a minimum. They are fragile, because the GUI is volatile.
The more GUI tests you have the less likely you are to keep them.

The only way Robert C. Martin knows of to effectively eliminate communication
errors between programmers and stakeholders is to write automated acceptance
tests.

54

2 Testing

e It should be QA’s role to work with business to create the automated acceptance
tests that become the true specification and requirements document for the system.
Iteration by iteration they gather the requirements from business and translate
them into tests that describe to developers how the system should behave.

Functional Tests

e These are a type of black-box testing that bases its test cases on the specifications
of the software component under test. Functions are tested by feeding them input
and examining the output, and internal program structure is rarely considered
(unlike white-box testing).

e Functional testing usually describes what the system does. Functional testing
does not imply that you are testing a function (method) of your module or class.
Functional testing tests a slice of functionality of the whole system.

o Functional testing differs from system testing in that functional testing "verifies a
program by checking it against ... design document(s) or specification(s)", while
system testing "validate[s] a program by checking it against the published user or
system requirements”.

e Functional testing has many types:
— Smoke testing (see above).

— Sanity testing - a sanity test or sanity check is a basic test to quickly evaluate
whether a claim or the result of a calculation can possibly be true. It is a
simple check to see if the produced material is rational. The point of a sanity
test is to rule out certain classes of obviously false results, not to catch every
possible error.

— Regression testing - this is re-running functional and non-functional tests to
ensure that previously developed and tested software still performs after a
change.

— Usability testing - this is a technique used in user-centered interaction design
to evaluate a product by testing it on users.

Non-Functional Tests

This is the testing of a software application or system for its non-functional requirements:
the way a system operates, rather than specific behaviors of that system. It can be for
example:

e Documentation testing
e Load testing

o Performance testing

95

Recovery testing
Security testing
Scalability testing

Stress testing

2 Testing

o6

3 Clean Code

o The only way to go fast, is to go well. (productivity / clean code / clean architec-
ture)

e The only way to make the deadline and the only way to go fast is to keep the code
as clean as possible at all times.

o Generalizing your code in this way to make it adaptable for something which
will never happen costs complexity and inflexibility in other areas plus time and
thought, which is wasted.

e Any time you bring in a new software engineering technique, you have to consider
what do I get, and what does it cost. Everything has a cost, but its proponents
won’t tell you so much about it. At the very least, it will make your code less
straightforward, and someone who doesn’t know the trick you're pulling will have
a hard time following what’s going on. And quite likely, it will reduce the perfor-
mance of your code to some extent.

e A programmer with “code-sense” will look at a messy module and see options
and variations.

e Bad code tries to do too much, it has muddled intent and ambiguity of purpose.
Clean code is focused. Each function, each class, each module exposes a single-
minded attitude that remains entirely undistracted, and unpolluted, by the sur-
rounding details.

e Code, without tests, is not clean. It should have unit and acceptance tests.

e Duplication. When the same thing is done over and over, it’s a sign that there is
an idea in our mind that is not well represented in the code. I try to figure out
what it is. Then I try to express that idea more clearly.

e Reduced duplication, high expressiveness, and early building of simple abstrac-
tions. That’s a clean code.

e The ratio of time spent reading vs. writing is well over 10:1. We are
constantly reading old code as part of the effort to write new code. Because this
ratio is so high, we want the reading of code to be easy, even if it makes the writing
harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier to write.

o7

3 Clean Code

Nothing has a more profound and long-term degrading effect upon a development
project than a bad code. Bad schedules can be redone, bad requirements can be
redefined. Bad team dynamics can be repaired. But bad code rots and ferments,
becoming an inexorable weight that drags the team down.

Each variable should have the smallest possible scope. For example, a local object
can be declared right before its first usage.

Programming is often an exploration. You think you know the right algorithm for
something, but then you wind up fiddling with it, prodding and poking at it, until
you get it to “work.” Before you consider yourself to be done with a function, make
sure you understand how it works. It is not good enough that it passes all the
tests. You must know that the solution is correct. Often the best way to gain this
knowledge and understanding is to refactor the function into something that is so
clean and expressive that it is obvious how it works.

Distinguish business exceptions from technical. It is a potential source
of confusion to represent them both using the same exception hierarchy, not to
mention the same exception class. It would be a mistake to attempt to resolve
these situations you caused yourself. Instead, we let the exception bubble up to
the highest architectural level and let some general exception-handling mechanism
do what it can to ensure that the system is in a safe state, such as rolling back a
transaction, logging and alerting administration, and reporting back (politely) to
the user. Mixing technical exceptions and business exceptions in the same hierarchy
blurs the distinction and confuses the caller about what the method contract is,
what conditions it is required to ensure before calling, and what situations it is
supposed to handle.

Replace magic numbers with named constants. However, some constants
are so easy to recognize that they don’t always need a named constant to hide
behind so long as they are used in conjunction with very self-explanatory code.

Encapsulate conditionals. Extract functions that explain the intent of the
conditional. For example:

if (shouldBeDeleted(timer))

is preferable to

if (timer.hasExpired() €€ Iltimer.isRecurrent())

Avoid negative conditionals. Negatives are just a bit harder to understand
than positives.

Encapsulate boundary conditions. Boundary conditions are hard to keep
track of. Put the processing for them in one place. Don’t let them leak all over
the code. For example:

o8

3 Clean Code

if(level + 1 < tags.length) { parts = new Parse(body, tags, level + 1, offset +
endTag); body = null; }

and better is:

int nextLevel = level + 1; if(nextLevel < tags.length) { parts = new Parse(body,
tags, nextLevel, offset + endTag); body = null; }

Names should describe side-effects. Names should describe everything that
a function, variable, or class is or does. Don’t hide side effects with a name. For
example, getSomeObj() is not a proper name, if this function also creates such
object ‘SomeObj’. Better name would be createOrReturnSomeObj().

Don’t use unambiguous names, for example doRename() and renamePage().
What do the names tell you about the difference between the two functions? Noth-
ing. A better name for that function is renamePage AndOptionallyAllReferences().
This may seem long, and it is, but it’s only called from one place in the module,
so it’s explanatory value outweighs the length.

Frameworks can be very powerful and very useful. Framework authors often
believe very deeply in their frameworks. The examples they write for how to use
their frameworks are told from the point of view of a true believer. Other authors
who write about the framework also tend to be disciples of the true belief. They
show you the way to use the framework. Often they assume an all-encompassing,
all-pervading, let-the-framework-do-everything position. This is not the posi-
tion you want to take. Look at each framework skeptically. Yes, it
might help, but at what cost? Ask yourself how you should use it, and how
you should protect yourself from it.

Prefer domains-specific types to primitive types.

You've been focused for hours on some gnarly problem, and there’s no solution
in sight. The trick is that while you’re coding, the logical part of your
brain is active and the creative side is shut out. It can’t present anything
to you until the logical side takes a break.

99

3 Clean Code

3.1 Comments

“Don’t comment bad code—rewrite it.” — Brian W. Kernighan and P. J. Plaugher

e Nothing can be quite so helpful as a well-placed comment. Nothing can clutter
up a module more than frivolous dogmatic comments. Nothing can be quite so

damaging as an old crufty comment that propagates lies and misinformation.

e The proper use of comments is to compensate for our failure to express ourselves
in code. Note that I used the word failure. I meant it. Comments are always
failures. We must have them because we cannot always figure out how to express

ourselves without them, but their use is not a cause for celebration.

e So when you find yourself in a position where you need to write a comment, think
it through and see whether there isn’t some way to turn the tables and express
yourself in code. Every time you express yourself in code, you should pat yourself
on the back. Every time you write a comment, you should grimace and feel the

failure of your ability of expression.

e Why am I so down on comments? Because they lie. Not always, and not inten-
tionally, but too often. The older a comment is, and the farther away it is from
the code it describes, the more likely it is to be just plain wrong. The reason is

simple. Programmers can’t realistically maintain them.

e Inaccurate comments are far worse than no comments at all. They delude and

mislead. They set expectations that will never be fulfilled.

e Truth can only be found in one place: the code. Only the code can truly tell you

what it does. It is the only source of truly accurate information.

¢ Good comments

— Legal comments (licenses, authors and so on).

— Informative comments (useful basic information with a comment). A com-
ment like this can sometimes be useful, but it is better to use the name of the

function to convey the information where possible.

— Explanation of intent.

— Clarification (sometimes it is just helpful to translate the meaning of some
obscure argument or return value into something that’s readable). There is a

substantial risk, of course, that a clarifying comment is incorrect.

— Warning of consequences.

— TODO comments - TODOs are jobs that the programmer thinks should be
done, but for some reason can’t do at the moment. However, a lot of people
think that TODO comments are not good any more, because we have issue

tracking systems for features, bugs, and ideas.

60

3 Clean Code

Amplification of something very important.

e Bad comments

Redundant, misleading, mandated, or noise comments.

Closing brace comments - if you find yourself wanting to mark your closing
braces, try to shorten your functions instead.

Commented-out code - there was a time, back in the sixties, when commenting-
out code might have been useful. But we’ve had good source code control
systems for a very long time now. Those systems will remember the code for
us. We don’t have to comment it out any more. Just delete the code. We
won’t lose it. Promise.

Nonlocal information
Too much information

Inobvious connection - the connection between a comment and the code it
describes should be obvious. The purpose of a comment is to explain code
that does not explain itself. It is a pity when a comment needs its own
explanation.

61

3.2

3 Clean Code

Formatting

First of all, let’s be clear. Code formatting is important. It is too important
to ignore and it is too important to treat religiously. Code formatting is about
communication, and communication is the professional developer’s first order of
business.

The functionality that you create today has a good chance of changing in the next
release, but the readability of your code will have a profound effect on all the
changes that will ever be made.

The newspaper metaphor. Think of a well-written newspaper article. You
read it vertically. We would like a source file to be like a newspaper article. The
name should be simple but explanatory. The name, by itself, should be sufficient
to tell us whether we are in the right module or not. The topmost parts of the
source file should provide the high-level concepts and algorithms. Detail should
increase as we move downward, until at the end we find the lowest level functions
and details in the source file.

Vertical openness between concepts. Nearly all code is read left to right and
top to bottom. Each line represents an expression or a clause, and each group
of lines represents a complete thought. Those thoughts should be separated from
each other with blank lines. Each blank line is a visual cue that identifies a new
and separate concept.

Vertical density. If openness separates concepts, then vertical density implies
close association. So lines of code that are tightly related should appear vertically
dense.

Vertical distance. Concepts that are closely related should be kept vertically
close to each other. Clearly this rule doesn’t work for concepts that belong in
separate files. But then closely related concepts should not be separated into
different files unless you have a very good reason. Indeed, this is one of the reasons
that protected variables should be avoided.

Variable declarations

— Variables should be declared as close to their usage as possible. Because
our functions are very short, local variables should appear a the top of each
function. Control variables for loops should usually be declared within the
loop statement.

— In rare cases a variable might be declared at the top of a block or just before
a loop in a long-ish function.

62

3 Clean Code

3.3 Error Handling

e Error handling is important, but if it obscures logic, it’s wrong.

» Use exceptions rather than return codes (more details in the next section).
e Provide context with exceptions.

e Define exception classes in terms of a caller’s needs.

e It is important to end up with a good amount of separation between your business
logic and your error handling.

e Don’t return Null

— When we return null, we are essentially creating work for ourselves and foist-
ing problems upon our callers. All it takes is one missing null check to send
an application spinning out of control. We invite errors with returning null.

— If you are tempted to return null from a method, consider throwing an excep-
tion or returning a SPECIAL CASE object instead. If you are calling a null-
returning method from a third-party API, consider wrapping that method
with a method that either throws an exception or returns a special case ob-
ject.

e Don’t pass Null

— Returning null from methods is bad, but passing null into methods is worse.
Unless you are working with an API which expects you to pass null, you
should avoid passing null in your code whenever possible.

— You can use assertions, but that does not solve the problem. It is better to
avoid passing nulls where they don’t belong.

63

3 Clean Code

3.4 Functions and Methods

e Blocks and indenting

— The blocks within if statements, else statements, while statements, and so on
should be one line long. Probably that line should be a function call.

— Not only does this keep the enclosing function small, but it also adds docu-
mentary value because the function called within the block can have a nicely
descriptive name.

¢ Dependent functions

— If one function calls another, they should be vertically close, and the caller
should be above the callee, if at all possible. This gives the program a natural
flow. If the convention is followed reliably, readers will be able to trust that
function definitions will follow shortly after their use.

e Vertical ordering

— In general we want function call dependencies to point in the downward di-
rection.

— That is, a function that is called should be below a function that does the
calling. This creates a nice flow down the source code module from high level
to low level.

— This is the exact opposite of languages like Pascal, C, and C++ that enforce
functions to be defined, or at least declared, before they are used.
e Do one thing

— A way to know that a function is doing more than “one thing” is if you can
extract another function from it with a name that is not merely a restatement
of its implementation.

e One level of abstraction per function

— In order to make sure our functions are doing “one thing,” we need to make
sure that the statements within our function are all at the same level of
abstraction.

— Mixing levels of abstraction within a function is always confusing. Readers
may not be able to tell whether a particular expression is an essential concept
or a detail.

— The statements within a function should all be written at the same level of
abstraction, which should be one level below the operation described by the
name of the function.

e« Reading code from top to bottom

— The Stepdown Rule: We want the code to read like a top-down narrative.

64

3 Clean Code

We want every function to be followed by those at the next level of abstraction
so that we can read the program, descending one level of abstraction at a time
as we read down the list of functions.

o Switch or if/else statements

3

It’s hard to make a small switch or if/else statement. Even a switch statement
with only two cases is larger than I'd like a single block or function to be.
It’s also hard to make a switch statement that does one thing. By their
nature, switch statements always do N things. Unfortunately we can’t always
avoid switch statements, but we can make sure that each switch statement is
buried in a low-level class and is never repeated. We do this, of course, with
polymorphism. For example:

public Money calculatePay(Employee e)
throws InvalidEmployeeType {
switch (e.type) {
case COMMISSIONED:
return calculateCommissionedPay(e);
case HOURLY:
return calculateHourlyPay(e);
case SALARIED:
return calculateSalariedPay(e);
default:
throw new InvalidEmployeeType (e.type);

src/switch__problem.java

There are a lot of problems with this function. First, it’s large, and when new
employee types are added, it will grow. Second, it very clearly does more than
one thing. Third, it violates SRP because there is more than one reason for
it to change. Fourth, it violates the OCP because it must change whenever
new types are added. But possibly the worst problem with this function is
that there are an unlimited number of other functions that will have the same
structure.

The solution here is to bury the switch statement in the basement of an
abstract factory design pattern, and never let anyone see it. The factory will
use the switch statement to create appropriate instances of the derivatives of
Employee, and the various functions, such as calculatePay, isPayday, and de-
liverPay, will be dispatched polymorphically through the Employee interface.

One general rule for switch statements is that they can be tolerated if they
appear only once, are used to create polymorphic objects, and are hidden
behind an inheritance relationship so that the rest of the system can’t see
them. Of course every circumstance is unique, and there are times when I
violate one or more parts of that rule. Solution to above problem might me:

public abstract class Employee {
public abstract boolean isPayday();
public abstract Money calculatePay();

65

3 Clean Code

1 public abstract void deliverPay(Money pay);
51}

8| public interface EmployeeFactory {
9 public Employee makeEmployee (EmployeeRecord r) throws
InvalidEmployeeType;

13| public class EmployeeFactoryImpl implements EmployeeFactory {
14 public Employee makeEmployee (EmployeeRecord r) throws
InvalidEmployeeType {

15 switch (r.type) {

16 case COMMISSIONED:

17 return new CommissionedEmployee(r) ;

18 case HOURLY:

19 return new HourlyEmployee (r);

20 case SALARIED:

1 return new SalariedEmploye(r);

2 default:

23 throw new InvalidEmployeeType (r.type);

src/switch__solution.java

e Use descriptive names

— The smaller and more focused a function is (hardly 20 LoC), the easier it is
to choose a descriptive name.

— Don’t be afraid to make a name long. A long descriptive name is better
than a short enigmatic name. A long descriptive name is better than a long
descriptive comment. Use a naming convention that allows multiple words
to be easily read in the function names, and then make use of those multiple
words to give the function a name that says what it does.

— Choosing descriptive names will clarify the design of the module in your mind
and help you to improve it. It is not at all uncommon that hunting for a good
name results in a favorable restructuring of the code. Be consistent in your
names. Use the same phrases, nouns, and verbs in the function names you
choose for your modules.

— Consider, for example, the names includeSetup AndTeardownPages, includeSe-
tupPages, includeSuiteSetupPage, and includeSetupPage. The similar phrase-
ology in those names allows the sequence to tell a story.

e Function arguments

— The ideal number of arguments for a function is 0 (niladic). Next comes
one (monadic), followed closely by two (dyadic). Three arguments (triadic)
should be avoided where possible. More than three (polyadic) requires very
special justification—and then shouldn’t be used anyway.

66

3 Clean Code

— Arguments are even harder from a testing point of view. Imagine the difficulty
of writing all the test cases to ensure that all the various combinations of
arguments work properly. If there are no arguments, this is trivial.

— Flag arguments are ugly. Passing a boolean into a function is a truly terrible
practice. It immediately complicates the signature of the method, loudly
proclaiming that this function does more than one thing. It does one thing if
the flag is true and another if the flag is false!

— When a function seems to need more than 2 or 3 arguments, it is likely
that some of those arguments ought to be wrapped into a class of their own.
Reducing the number of arguments by creating objects out of them may seem
like cheating, but it’s not. When groups of variables are passed together, the
way x and y are in the example above, they are likely part of a concept that
deserves a name of its own. Consider, for example, the difference between the
following declarations:

Circle makeCircle(double z, double y, double radius);
Circle makeCircle(Point center, double radius);
« Have no side effects. Side effects are lies. Your function promises to do one
thing, but it also does other hidden things.
o Output (that are input) arguments.
— For example, “report” is an output argument:
public void appendFooter(StringBuffer report)

— In the days before object oriented programming it was sometimes necessary
to have output arguments. However, much of the need for output arguments
disappears in OO languages because this is intended to act as an output
argument. In other words, it would be better for appendFooter to be invoked
as: report.appendFooter();

— In general output arguments should be avoided. If your function must change
the state of something, have it change the state of its owning object.
e Command Query Separation

— Functions should either do something or answer something, but not both.
Either your function should change the state of an object, or it should return
some information about that object. Doing both often leads to confusion.

— For example, function: public boolean set(String attribute, String value);

* It sets the value of a named attribute and returns true if it is successful
and false if no such attribute exists.

* Imagine this from the point of view of the reader. What does it mean? Is
it asking whether the “username” attribute was previously set to “uncle-
bob”? Or is it asking whether the “username” attribute was successfully

67

3 Clean Code

set to “unclebob”? It’s hard to infer the meaning from the call because
it’s not clear whether the word “set” is a verb or an adjective.

x The real solution is to separate the command from the query so that the
ambiguity cannot occur:

1| if (attributeExists("username")) {
2 setAttribute ("username", "unclebob");

src/command__query_separation.java

e Prefer exceptions to returning error codes

N =

o ook W

~

Returning error codes from command functions is a subtle violation of com-
mand query separation. It promotes commands being used as expressions in
the predicates of if statements: if (deletePage(page) == E_OK)

On the other hand, if you use exceptions instead of returned error codes, then
the error processing code can be separated from the happy path code and can
be simplified:

try {
deletePage (page);
registry.deleteReference (page.name);
configKeys.deleteKey (page.name.makeKey ());
}
catch (Exception e) {
logger.log(e.getMessage ());
}

src/exceptions_instead__or_return_ codes.java

o Extract try/catch blocks

15

16

Try/catch blocks are ugly in their own right. They confuse the structure of
the code and mix error processing with normal processing. So it is better to
extract the bodies of the try and catch blocks out into functions of their own.

public void delete(Page page) {
try {
deletePageAndAllReferences (page);
}
catch (Exception e) {
logError (e);
}
}

private void deletePageAndAllReferences (Page page) throws Exception {
deletePage (page) ;
registry.deleteReference (page.name);
configKeys.deleteKey (page.name.makeKey ());

}

private void logError (Exception e) {
logger.log(e.getMessage ());

68

3 Clean Code

18] }

src/extracted__exception_ blocks.java

In the above, the delete function is all about error processing. It is easy to
understand and then ignore. The deletePageAndAllReferences function is all
about the processes of fully deleting a page. Error handling can be ignored.
This provides a nice separation that makes the code easier to understand and
modify.

e Error handling is one thing. Functions should do one thing. Error handing
is one thing. Thus, a function that handles errors should do nothing else. This
implies (as in the example above) that if the keyword try exists in a function, it
should be the very first word in the function and that there should be nothing
after the catch/finally blocks.

e How to write clean functions?

Writing software is like any other kind of writing. When you write a paper or
an article, you get your thoughts down first, then you massage it until it reads
well. The first draft might be clumsy and disorganized, so you wordsmith it
and restructure it and refine it until it reads the way you want it to read.

When I write functions, they come out long and complicated. They have lots
of indenting and nested loops. They have long argument lists. The names are
arbitrary, and there is duplicated code. But I also have a suite of unit tests
that cover every one of those clumsy lines of code.

So then I massage and refine that code, splitting out functions, changing
names, eliminating duplication. I shrink the methods and reorder them.
Sometimes I break out whole classes, all the while keeping the tests pass-
ing.

In the end, I wind up with functions that follow the rules I've laid down in
this chapter. I don’t write them that way to start. I don’t think anyone could.

69

3.5

3 Clean Code

Classes

In general, base classes should know nothing about their derivatives.
There are exceptions to this rule, of course. Sometimes the number of
derivatives is strictly fixed, and the base class has code that selects between the
derivatives. However, in that case the derivatives and base class are strongly
coupled and always deploy together in the same (for instance) jar file. In the
general case we want to be able to deploy derivatives and bases in different jar
files.

Make logical dependencies physical.

Well-defined modules have very small interfaces that allow you to do
a lot with a little. Poorly defined modules have wide and deep interfaces that
force you to use many different gestures to get simple things done. A well-defined
interface does not offer very many functions to depend upon, so coupling is low. A
poorly defined interface provides lots of functions that you must call, so coupling
is high. Good software developers learn to limit what they expose at the interfaces
of their classes and modules. The fewer methods a class has, the better. The
fewer variables a function knows about, the better. The fewer instance variables
a class has, the better. Hide your data. Hide your utility functions. Hide your
constants and your temporaries. Don’t create classes with lots of methods or lots
of instance variables. Don’t create lots of protected variables and functions for
your subclasses. Concentrate on keeping interfaces very tight and very
small.

Interfaces occur at the highest level of abstraction (user interfaces), at the lowest
(function interfaces), and at levels in between (class interfaces, library interfaces,
etc.). Good interfaces are easy to use correctly, and hard to use incorrectly.

Encapsulation

— We like to keep our variables and utility functions private, but we’re not
fanatic about it.

— Sometimes we need to make a variable or utility function protected so that
it can be accessed by a test. For us, tests rule. If a test in the same package
needs to call a function or access a variable, we’ll make it protected or package
scope.

Classes should be small

— The first rule of classes is that they should be small. The second rule of classes
is that they should be smaller than that. With functions we measured size by
counting physical lines. With classes we use a different measure. We count
responsibilities.

70

3 Clean Code

— The name of a class should describe what responsibilities it fulfills. In fact,
naming is probably the first way of helping determine class size. If we can-
not derive a concise name for a class, then it’s likely too large. The more
ambiguous the class name, the more likely it has too many responsibilities.

SOLID

Good software systems begin with clean code. On the one hand, if the bricks
aren’t well made, the architecture of the building doesn’t matter much. On the
other hand, you can make a substantial mess with well-made bricks. This is where
the SOLID principles come in. They were grouped and stabilized in early 2000s.

The SOLID principles tell us how to arrange our functions and data structures
into classes, and how those classes should be interconnected. The use of the word
“class” does not imply that these principles are applicable only to object-oriented
software. A class is simply a coupled grouping of functions and data. Every
software system has such groupings, whether they are called classes or not. The
SOLID principles apply to those groupings.

The goal of the principles is the creation of mid-level (module level) software
structures that:

— tolerate change,

— are easy to understand, and

— are the basis of components that can be used in many software systems.

SRP (The Single Responsibility Principle)

It states that a class or module (or a function) should have one, and only one, reason
to change (responsibility). This principle gives us both a definition of responsi-
bility, and a guidelines for class size. Classes should have one responsibility—one
reason to change. Each small class encapsulates a single responsibility, has a single
reason to change, and collaborates with a few others to achieve the desired system
behaviors.

Gather together those things that change for the same reason, and sep-
arate those things that change for different reasons.

It has an inappropriate name, it is very misunderstood by programmers and does
not mean that every module should do just one thing. Make no mistake, there is
a principle like that. A function should do one, and only one, thing. We use that
principle when we are refactoring large functions into smaller functions; we use it
at the lowest levels. But it is not one of the SOLID principles - it is not the SRP.

Software systems are changed to satisfy users and stakeholders; those users and
stakeholders are the “reason to change” that the principle is talking about. Indeed,

71

3 Clean Code

we can rephrase the principle to say this: A module should be responsible to one,
and only one, user or stakeholder. Unfortunately, the words “user” and “stake-
holder” aren’t really the right words to use here. There will likely be more than one
user or stakeholder who wants the system changed in the same way. Instead, we're
really referring to a group—one or more people who require that change. We’ll
refer to that group as an actor. And by module we mean source file for example.
Thus the final version of the SRP is: A module should be responsible to one, and
only one, actor.

OCP (The Open-Closed Principle)

Bertrand Meyer made this principle famous in the 1988. The gist is that for
software systems to be easy to change, they must be designed to allow the behavior
of those systems to be changed by adding new code, rather than changing existing
code: A software artifact should be open for extension but closed for
modification.

We want to structure our systems so that we muck with as little as possible when
we update them with new or changed features. In an ideal system, we incorporate
new features by extending the system, not by making modifications to existing
code.

Most students of software design recognize the OCP as a principle that guides
them in the design of classes and modules. But the principle takes on even greater
significance when we consider the level of architectural components. If component
A should be protected from changes in component B, then component B should
depend on component A. Why should A hold such a privileged position? Because
it contains the business rules. Higher-level components in a hierarchy are protected
from the changes made to lower-level components.

The OCP is one of the driving forces behind the architecture of systems.
The goal is to make the system easy to extend without incurring a high impact
of change. This goal is accomplished by partitioning the system into components,
and arranging those components into a dependency hierarchy that protects
higher-level components from changes in lower-level components.

LSP (The Liskov Substitution Principle)

Barbara Liskov’s famous definition of subtypes, from 1988.

In short, this principle says that to build software systems from interchangeable
parts, those parts must adhere to a contract that allows those parts to be substi-
tuted one for another.

So, if you have a base type, and a subtype, that subclass should be substitutable
for the base class (at any point in a program).

72

3 Clean Code

o« What this practically means is that a method in a subclass must receive
everything that base class is expecting to be able to receive, but it
may also expect a bit more (superset). What a method in a subclass can
return, must be the same as in base class, or just its subset. Also, a set
of possible states of subclass must either be the same as in base class,
or their subset. So basically, everything base class can do, must do also
derived class (plus, of course, something more). See videos [5:30]' and
[10:30]2
Some people (also see the videos above) recommend that composition si better
than inheritance.

 So basically, you are liberal what to receive, but conservative what to send (if people
were like this, world would be fantastic). No unexpected surprises, so that you may
‘count’ on subclass. In reality, we mostly do it wrong - we are subclassing ’too
much’. You are maybe overusing inheritance in places where inheritance shouldn’t
actually be used.

e Derived classes must be usable through the base class interface, with-
out the need for the user to know the difference.? For example: Client —
AbstractServer « ConcreteServer, and we should be able to substitute that
AbstractServer with ConcreteServer and the Client shouldn’t know the differ-
ence. This is a simple polymorphism.

e A simple violation of substitutability, can cause a system’s architecture
to be polluted with a significant amount of extra mechanisms.

e This is probably the most technical of the 5 SOLID principles and the one I would
guess fewest people consider much. However, it does have some important conse-
quences for designing object-oriented software.

o If we can rely on the LSP, it allows us to use polymorphism reliably in our code.
Polymorphism is a key way to avoid repetition in code as it allows you to maximize
the generality of the code you are writing.

ISP (The Interface Segregation Principle)

o This principle advises software designers to avoid depending on things
that they don’t use. The lesson here is that depending on something that carries
baggage that you don’t need can cause you troubles that you didn’t expect.

e It says that it is better to have smaller interfaces, rather than a few
very large interfaces. But be careful, this depends on a given project

"https://www.youtube . com/watch?v=bVwZquRH1Vk&1list=PLrhzvIcii6GMQceffIgKCRK98yTmOoolmk
index=3

2https://www.youtube.com/watch?v=ObHQHsszcE&list=PLrhszciiGGMSfGSgRL1meSBvo4TPliQ

3https://www.youtube.com/watch?v=TMuno5RZNeE

73

https://www.youtube.com/watch?v=bVwZquRH1Vk&list=PLrhzvIcii6GMQceffIgKCRK98yTm0oolm&index=3
https://www.youtube.com/watch?v=bVwZquRH1Vk&list=PLrhzvIcii6GMQceffIgKCRK98yTm0oolm&index=3
https://www.youtube.com/watch?v=ObHQHszbIcE&list=PLrhzvIcii6GMsfGSgRL1xmS3Bvo4TPliQ
 https://www.youtube.com/watch?v=TMuno5RZNeE

3 Clean Code

and your requirements! Small can mean different things across the projects.
In this way, we are favoring composition over inheritance, and decoupling over
coupling. If you are thinking about microservices, it is basically the same thing
(we are creating objects with small responsibilities and then we are composing
them together).?

e In general, it is harmful to depend on modules that contain more than you need.
This is obviously true for source code dependencies that can force unnecessary
recompilation and redeployment—but it is also true at a much higher, architectural
level.

e For example, consider that an architect is working on a system, S. He wants to
include a certain framework, F', into the system. Now suppose that the authors of
F have bound it to a particular database, D. So S depends on F'. which depends
on D. Now suppose that D contains features that F' does not use and, therefore,
that S does not care about. Changes to those features within D may well force the
redeployment of F' and, therefore, the redeployment of S. Even worse, a failure of
one of the features within D may cause failures in ' and S.

DIP (The Dependency Inversion Principle)

¢ In essence, the DIP says that our classes should depend upon abstractions, not on
concrete details. An example, instead of depend on an implementation details of
some concrete class, it would be better to depend on an interface instead.

High-level modules should not depend on low-level modules. Both should
depend on abstractions.

Abstractions should not depend on details. Details should depend on abstrac-
tions.

The "inversion" concept does not mean that lower-level layers depend on
higher-level layers. Both layers should depend on abstractions that draw
the behavior needed by higher-level layers.

— The code that implements high-level policy should not depend on the code
that implements low-level details. Rather, details should depend on policies.

e In a statically typed language, like Java, this means that the use, import, and
include statements should refer only to source modules containing interfaces, ab-
stract classes, or some other kind of abstract declaration. Nothing concrete should
be depended on. The same rule applies for dynamically typed languages, like Ruby
and Python. Source code dependencies should not refer to concrete modules. How-
ever, in these languages it is a bit harder to define what a concrete module is. In
particular, it is any module in which the functions being called are implemented.

‘https://www.youtube.com/watch?v=xahwVmf8itI&list=PLrhzvIcii6GMQceffIgKCRKI8yTmOoolmé
index=4

74

https://www.youtube.com/watch?v=xahwVmf8itI&list=PLrhzvIcii6GMQceffIgKCRK98yTm0oolm&index=4
https://www.youtube.com/watch?v=xahwVmf8itI&list=PLrhzvIcii6GMQceffIgKCRK98yTm0oolm&index=4

3 Clean Code

Clearly, treating this idea as a rule is unrealistic, because software systems must
depend on many concrete facilities. For example, the String class in Java is con-
crete, and it would be unrealistic to try to force it to be abstract. The source code
dependency on the concrete java.lang.string cannot, and should not, be avoided.
By comparison, the String class is very stable. Changes to that class are very rare
and tightly controlled. Programmers and architects do not have to worry about
frequent and capricious changes to String. We tolerate such concrete dependencies
because we know we can rely on them not to change.

Good software designers and architects work hard to reduce the volatility of in-
terfaces. They try to find ways to add functionality to implementations without
making changes to the interfaces.

DIP violations cannot be entirely removed, but they can be gathered into a small
number of concrete components and kept separate from the rest of the system.

Entities Authorizer

Sl
==

Entities Authorizer
User ‘I Permissions
l | ;, Permissions

Figure 3.1: An example of DIP application.

75

3.6

3 Clean Code

System Level

“Complexity kills. It sucks the life out of developers, it makes products difficult to
plan, build, and test.” — Ray Ozzie, CTO, Microsoft Corporation

Cities grow from towns, which grow from settlements. At first the roads are narrow
and practically nonexistent, then they are paved, then widened over time. How
many times have you driven, bumper to bumper through a road “improvement”
project and asked yourself, “Why didn’t they build it wide enough the first time!?”
But it couldn’t have happened any other way. Who can justify the expense of a
six-lane highway through the middle of a small town that anticipates growth?
It is a myth that we can get systems “right the first time.” Instead, we should
implement only today’s stories, then refactor and expand the system to implement
new stories tomorrow. This is the essence of iterative and incremental agility.
Test-driven development, refactoring, and the clean code they produce make this
work at the code level.

“Construction” is a very different process from “use”. Software systems
should separate the startup process, when the application objects are constructed
and the dependencies are “wired” together, from the runtime logic that takes over
after startup.

Dependency Injection

— This is the application of Inversion of Control (IoC) to dependency manage-
ment. Inversion of Control moves secondary responsibilities from an object
to other objects that are dedicated to the purpose, thereby supporting the
Single Responsibility Principle. In the context of dependency management,
an object should not take responsibility for instantiating dependencies itself.
Instead, it should pass this responsibility to another “authoritative” mecha-
nism, thereby inverting the control.

— True Dependency Injection goes one step further. The class takes no direct
steps to resolve its dependencies; it is completely passive. Instead, it provides
setter methods or constructor arguments (or both) that are used to inject the
dependencies. During the construction process, the DI container instantiates
the required objects (usually on demand) and uses the constructor arguments
or setter methods provided to wire together the dependencies. Which de-
pendent objects are actually used is specified through a configuration file or
programmatically in a special-purpose construction module.

— So it is used when you want to change behavior of your class in runtime, and
not in compile time. It can be helpful for achieving Dependency Inversion
(with interfaces and so on). So dependency injection increases flexibility of
our code. Also, unit testing is easier because of isolation.

Big Design Up Front

76

3 Clean Code

— This is a practice of designing everything up front before implementing any-
thing at all.

— In fact, BDUF is even harmful because it inhibits adapting to change, due to
the psychological resistance to discarding prior effort and because of the way
architecture choices influence subsequent thinking about the design.

— Building architects have to do BDUF because it is not feasible to make radical
architectural changes to a large physical structure once construction is well
underway.

— We can start a software project with a “naively simple” but nicely decou-
pled architecture, delivering working user stories quickly, then adding more
infrastructure as we scale up.

— Of course, this does not mean that we go into a project “rudderless.” We have
some expectations of the general scope, goals, and schedule for the project,
as well as the general structure of the resulting system. However, we must
maintain the ability to change course in response to evolving circumstances.

e Optimize decision making

— We often forget that it is also best to postpone decisions until the last possible
moment. This isn’t lazy or irresponsible; it lets us make informed choices with
the best possible information. A premature decision is a decision made with
sub-optimal knowledge.

e Simple design
A design is “simple” if it follows these rules (given in order of importance):

— Tests. Writing tests leads to better designs. Fortunately, making our systems
testable pushes us toward a design where our classes are small and single
purpose. It’s just easier to test classes that conform to the SRP. The more
tests we write, the more we’ll continue to push toward things that are simpler
to test. So making sure our system is fully testable helps us create better
designs.

— No duplication

* Duplication is the primary enemy of a well-designed system. It represents
additional work, additional risk, and additional unnecessary complexity.

* The most obvious form of duplication is when you have clumps of identical
code. These should be replaced with simple functions/methods.

* Switch/case or if/else chain that appears again and again in various mod-
ules, always testing for the same set of conditions, is also duplication.
These should be replaced by polymorphism.

* In databases, there are Codd Normal Forms for eliminating duplication.

77

15
16
17

18

15
16
17
18
19

VRN

3 Clean Code

Modules that have similar algorithms, but don’t share similar lines of
code. It is duplication and should be addressed by template method de-
sign pattern, which is a common technique for removing higher-level du-
plication. For example:

public class VacationPolicy {
public void accrueUSDivisionVacation() {
// code to calculate vacation based on hours worked to date

//

// code to ensure vacation meets US minimums
/...

// code to apply vaction to payroll record
//

}
public void accrueEUDivisionVacation() {
// code to calculate vacation based on hours worked to date

//

// code to ensure vacation meets EU minimums
//

// code to apply vaction to payroll record
//

src/duplication__problem.java

can be refactored to:

abstract public class VacationPolicy {
public void accrueVacation() {
calculateBaseVacationHours () ;
alterForLegalMinimums () ;
applyToPayroll () ;

private void calculateBaseVacationHours() { /x ... */ };
abstract protected void alterForLegalMinimums () ;
private void applyToPayroll() { /* ... */ };

}

public class USVacationPolicy extends VacationPolicy {
@Override protected void alterForLegalMinimums () {
// US specific logic
}
}

public class EUVacationPolicy extends VacationPolicy {
@0verride protected void alterForLegalMinimums () {
// EU specific logic

src/duplication_solution.java

— Expresses the intent of the programmer

*

The majority of the cost of a software project is in long-term mainte-
nance. In order to minimize the potential for defects as we introduce
change, it’s critical for us to be able to understand what a system does.
As systems become more complex, they take more and more time for a
developer to understand, and there is an ever greater opportunity for a

78

3 Clean Code

misunderstanding. Therefore, code should clearly express the intent of
its author.

* Good names. Small functions and classes. Using standard nomenclature,
for example design patterns (and use standard names for classes that
implements these patterns).

x Well-written unit tests - documentation by example. Someone reading
our tests should be able to get a quick understanding of what a class is
all about.

— Minimizes the number of classes and methods

x In an effort to make our classes and methods small, we might create too
many tiny classes and methods. So this rule suggests that we also keep
our function and class counts low.

x Our goal is to keep our overall system small while we are also keeping
our functions and classes small. Remember, however, that this rule is
the lowest priority of the four rules of simple design. So, although it’s
important to keep class and function count low, it’s more important to
have tests, eliminate duplication, and express yourself.

79

4 Design Patterns

They are a general repeatable solution to a commonly occurring problem in software
design.

e A design pattern isn’t a finished design that can be transformed directly into code.
It is a description or template for how to solve a problem that can be used in many
different situations.

e Design patterns can speed up the development process by providing tested, proven
development paradigms. Effective software design requires considering issues that
may not become visible until later in the implementation.

« Reusing design patterns helps to prevent subtle issues that can cause major prob-
lems and improves code readability for coders and architects familiar with the
patterns.

e Originally there were 23 design patterns basic, language-independent design pat-
terns. Now there are about 40.

e They are also about more abstract understanding of software. They also help to
create well structured software in less time. They also offer a “shared language”
to communicate.

e Actually a lot of design patterns are implemented in programming language. So
don’t over-complicate things and don’t use something that is built-in! For example,
Tterator pattern.

80

4.1

4 Design Patterns

Creational Patterns

These design patterns are all about class instantiation. This pattern can be further
divided into class-creation patterns and object-creational patterns. While class-creation
patterns use inheritance effectively in the instantiation process, object-creation patterns
use delegation effectively to get the job done.

Singleton

The experience shows that most singletons really do more harm than good. A lot
of people never uses singleton, it is even considered as a code smell. It is “global”,
anyone can modify that without even knowing it - you lost control. Also, having
just 1 instance in growing application can be misleading. Maybe in the future,
there will be more instances. Also, in multi-threaded application, singleton can be
dangerous.

The single-instance requirement is often imagined. In many cases, it’s pure spec-
ulation that no additional instances will be needed in the future.

Singletons cause implicit dependencies between conceptually independent units of
code. This is problematic both because they are hidden and because they introduce
unnecessary coupling between units.

Singletons also carry implicit persistent state, which hinders unit testing. Unit
testing depends on tests being independent of one another, so the tests can be run
in any order and the program can be set to a known state before the execution of
every unit test. Once you have introduced singletons with mutable state, this may
be hard to achieve. In addition, such globally accessible persistent state makes it
harder to reason about the code, especially in a multi-threaded environment.

Multi-threading introduces further pitfalls to the singleton pattern. As straight-
forward locking on access is not very efficient, the so-called double-checked locking
pattern (DCLP) has gained in popularity. Unfortunately, this may be a further
form of fatal attraction. It turns out that in many languages, DCLP is not thread-
safe and, even where it is, there are still opportunities to get it subtly wrong.

The cleanup of singletons may present also a challenge.

Some of these shortcomings can be overcome by introducing additional mecha-
nisms. However, this comes at the cost of additional complexity in code that could
have been avoided by choosing an alternative design. Therefore, restrict your use
of the Singleton pattern to the classes that truly must never be instantiated more
than once. Don’t use a singleton’s global access point from arbitrary code.

81

4 Design Patterns

Figure 4.1: Factory method and Abstract Factory design patterns.

82

4 Design Patterns

4.2 Structural Patterns

These design patterns are all about class and object composition. Structural class-
creation patterns use inheritance to compose interfaces. Structural object-patterns define
ways to compose objects to obtain new functionality.

Figure 4.2: Adapter and Facade design patterns.

83

4 Design Patterns

Figure 4.3: Decorator design pattern.

84

4 Design Patterns

Figure 4.4: Proxy and Bridge design patterns.

85

4 Design Patterns

4.3 Behavioral Patterns

These design patterns are all about class’s objects communication. Behavioral patterns
are those patterns that are most specifically concerned with communication between
objects.

Figure 4.5: Command design pattern.

86

4 Design Patterns

1ie ol aheit 1(“.{.3 wer ,-
the Hims \Uutot\'u{&s

oot).
f This 7 8 uutl‘lﬂ-.‘-’.,

Figure 4.6: Iterator design pattern.

87

4 Design Patterns

Figure 4.7: State design pattern.

88

4 Design Patterns

Figure 4.8: Null Object design pattern.

89

4 Design Patterns

Figure 4.9: Template Method design pattern.

90

4 Design Patterns

Figure 4.10: Strategy and Observer design pattern.

91

5 Software Architecture Patterns

FlEl2|2|&
overallAgiity | < | 4 | 4 | 4 | 4
Deployment ‘ f f * f
Testabilty | 4 [[4| 4| ¥
Performance ’ * f ’ *
Scalability ’ f ‘ f f
Development f ; ; * *

Figure 5.1: Summary of some software architecrutal patterns that are detailed in this
chapter.

e The word “architecture” is often used in the context of something at a high level
that is divorced from the lower-level details, whereas “design” more often seems to
imply structures and decisions at a lower level. But this usage is nonsensical when
you look at what a real architect does. But there is no difference between them.
None at all. The low-level details and the high-level structure are all part of the
same whole.

o The goal of software architecture is to minimize the human resources required to
build and maintain the required system.

e The measure of design quality is simply the measure of the effort required to meet
the needs of the customer. If that effort is low, and stays low throughout the

92

5 Software Architecture Patterns

lifetime of the system, the design is good. If that effort grows with each new
release, the design is bad. It’s as simple as that.

A software architect is a programmer; and continues to be a programmer. Software
architects are the best programmers, and they continue to take programming tasks,
while they also guide the rest of the team toward a design that maximizes produc-
tivity. Software architects may not write as much code as other programmers do,
but they continue to engage in programming tasks.

Which kinds of decisions are premature? Decisions that have nothing to
do with the business requirements (the use cases) of the system. These include
decisions about frameworks, databases, web servers, utility libraries, dependency
injection, and the like. A good system architecture is one in which decisions
like these are rendered ancillary and deferrable. A good system architecture does
not depend on those decisions. A good system architecture allows those
decisions to be made at the latest possible moment, without significant
impact.

Your architecture should tell readers about the system, not about the frameworks
you used in your system. If you are building a health care system, then when new
programmers look at the source repository, their first impression should be, “Oh,
this is a heath care system.”

GUI is a detail. Web is GUI. Mobile apps are also GUIL. You have to separate
business logic from details! Make plugins! Database system is also just a detail.
All these are just technologies (the same comes with frameworks), and technologies
change! Also, you want to test business rules separately, not with GUI or database.
These things can change! It is not good to have all mixed together from long
term perspective. And, as an architect, you want to put details like that behind
boundaries that keep them separate from your core business logic.

The first step in determining the initial architecture of the system is
to identify the actors and use cases. Imagine that you identified some actors
in use case diagram (for example). According to the SRP, these N actors will be
the N primary sources of change for the system. Every time some new feature is
added, or some existing feature is changed, that step will be taken to serve one of
these actors. Therefore we want to partition the system such that a change to one
actor does not affect any of the other actors.

Eisenhower Matrix

— I have 2 kinds of problems, the urgent and the important. The urgent are not
important, and the important are never urgent.

— The first value of software - behavior - is urgent but not always par-
ticularly important. The second value of software - architecture - is

93

5 Software Architecture Patterns

important but never particularly urgent. Of course, some things are
both urgent and important. Other things are not urgent and not important.

— We can arrange them into priorities:
1. Urgent and important
2. Not urgent and important
3. Urgent and not important
4. Not urgent and not important

— Sometimes managers fail to separate those features that are urgent but not
important from those features that truly are urgent and important. This
failure then leads to ignoring the important architecture of the system in
favor of the unimportant features of the system. It is the responsibility of the
software development team to assert the importance of architecture over the
urgency of features. (!)

¢ A good architecture must support:
— The development of the system

* The reason why so many systems lack good architecture: They were
begun with none, because the team was small and did not want the
impediment of a superstructure.

* On the other hand, a system being developed by five different teams,
each of which includes seven developers, cannot make progress unless
the system is divided into well-defined components with reliably stable
interfaces.

— The deployment of the system

x To be effective, a software system must be deployable. The higher the
cost of deployment, the less useful the system is. A goal of a software
architecture, then, should be to make a system that can be easily deployed
with a single action.

x Unfortunately, deployment strategy is seldom considered during initial
development. This leads to architectures that may make the system easy
to develop, but leave it very difficult to deploy. For example, in the early
development of a system, the developers may decide to use a “micro-
service architecture.” They may find that this approach makes the system
very easy to develop since the component boundaries are very firm and the
interfaces relatively stable. However, when it comes time to deploy the
system, they may discover that the number of micro-services has become
daunting; configuring the connections between them, and the timing of
their initiation, may also turn out to be a huge source of errors.

94

*

5 Software Architecture Patterns

A good architecture does not rely on dozens of little configuration scripts
and property file tweaks. It does not require manual creation of direc-
tories or files that must be arranged just so. A good architecture helps
the system to be immediately deployable after build. This is achieved
through the proper partitioning and isolation of the components of the
system, including those master components that tie the whole system
together and ensure that each component is properly started, integrated,
and supervised.

— The operation of the system

*

*

The impact of architecture on system operation tends to be less dra-
matic than the impact of architecture on development, deployment, and
maintenance.

Almost any operational difficulty can be resolved by throwing more hard-
ware at the system without drastically impacting the software architec-
ture.

— The maintenance of the system

*

*

Of all the aspects of a software system, maintenance is the most costly.

The never-ending parade of new features and the inevitable trail of defects
and corrections consume vast amounts of human resources.

— Keeping options open

*

Software has two types of value: the value of its behavior and the value
of its structure. The second of these is the greater of the two because
it is this value that makes software soft. Software was invented because
we needed a way to quickly and easily change the behavior of machines.
But that flexibility depends critically on the shape of the system, the
arrangement of its components, and the way those components are inter-
connected.

The way you keep software soft is to leave as many options open as
possible, for as long as possible. (!)

If you can develop the high-level policy without committing to the details
that surround it, you can delay and defer decisions about those details
for a long time. And the longer you wait to make those decisions, the
more information you have with which to make them properly.

This also leaves you the option to try different experiments. If you have
a portion of the high-level policy working, and it is agnostic about the
database, you could try connecting it to several different databases to
check applicability and performance. The same is true with web systems,
web frameworks, or even the web itself.

What if the decisions have already been made by someone else? What
if your company has made a commitment to a certain database, or a

95

5 Software Architecture Patterns

certain web server, or a certain framework? A good architect pretends
that the decision has not been made, and shapes the system such that
those decisions can still be deferred or changed for as long as possible.

o There are many abstract layers in an architecture (see figure below).

The Clean Architecture

| Enterprise Business Rules
__| Application Business Rules
__| Interface Adapters

.| Frameworks & Drivers

|
¢
i

f

‘i

Controller 3

i
'E

i
g

Figure 5.2: The concentric circles in figure below represent different areas of software.
In general, the further in you go, the higher level the software becomes. The
outer circles are mechanisms. The inner circles are policies. Nothing in an
inner circle can know anything at all about something in an outer circle. In
particular, the name of something declared in an outer circle must not be
mentioned by the code in an inner circle. That includes functions, classes,
variables, or any other named software entity.

— Entity Layer. It can be an object with methods, or it can be a set of data
structures and functions. It doesn’t matter so long as the entities can be
used by many different applications in the enterprise. If you don’t have an
enterprise and are writing just a single application, then these entities are the
business objects of the application. They encapsulate the most general and
high-level rules. They are the least likely to change when something external
changes.

96

5 Software Architecture Patterns

— Use Case Layer. It contains application-specific business rules. It encap-
sulates and implements all of the use cases of the system. These use cases
orchestrate the flow of data to and from the entities, and direct those entities
to use their Critical Business Rules to achieve the goals of the use case. We do
not expect changes in this layer to affect the entities. We also do not expect
this layer to be affected by changes to externalities such as the database, the
Ul or any of the common frameworks. The use cases layer is isolated from
such concerns.

— Interface Adapters Layer. It is a set of adapters that convert data from
the format most convenient for the use cases and entities, to the format most
convenient for some external agency such as the database or the web.

— Frameworks and Drivers Layer. It is generally composed of frameworks
and tools such as the database and the web framework. Generally you don’t
write much code in this layer, other than glue code that communicates to the
next circle inward. The frameworks and drivers layer is where all the details
go. The web is a detail. The database is a detail. We keep these things on
the outside where they can do little harm.

o Architectural boundaries exist everywhere. We, as architects, must be careful to
recognize when they are needed. We also have to be aware that such boundaries,
when fully implemented, are expensive. At the same time, we have to recognize
that when such boundaries are ignored, they are very expensive to add in later—
even in the presence of comprehensive test-suites and refactoring discipline.

e O Software Architect, you must see the future. You must guess - intelligently. You
must weigh the costs and determine where the architectural boundaries lie, and
which should be fully implemented, and which should be partially implemented,
and which should be ignored. But this is not a one-time decision. You don’t
simply decide at the start of a project which boundaries to implement and which
to ignore. Rather, you watch. You pay attention as the system evolves. You note
where boundaries may be required, and then carefully watch for the first inkling
of friction because those boundaries don’t exist.

e In every system, there is at least one component that creates, coordinates, and
oversees the others. Let’s call it Main. It is the initial entry point of the system.
Nothing, other than the operating system, depends on it. Its job is to create all
the Factories, Strategies, and other global facilities, and then hand control over
to the high-level abstract portions of the system. Think of Main (for example
function) as a plugin to the application a plugin that sets up the initial conditions
and configurations, gathers all the outside resources, and then hands control over
to the high-level policy of the application. Since it is a plugin, it is possible to
have many Main components, one for each configuration of your application. For
example, you could have a Main plugin for Dev, another for Test, and yet another
for Production. You could also have a Main plugin for each country you deploy to.

97

5 Software Architecture Patterns

Component Principles

e If the SOLID principles tell us how to arrange the bricks into walls and rooms,
then the component principles tell us how to arrange the rooms into buildings.
Large software systems, like large buildings, are built out of smaller components.

e Regardless of how they are eventually deployed, well-designed components always
retain the ability to be independently deployable and, therefore, independently
developable.

Component Cohesion

o There are 3 principles of component cohesion. They tend to fight each other (see
figure below). The REP and CCP are inclusive principles: Both tend to make
components larger. The CRP is an exclusive principle, driving components to be
smaller. It is the tension between these principles that good architects seek to
resolve. A good architect finds a position in that tension triangle that meets the
current concerns of the development team, but is also aware that those concerns
will change over time. For example, early in the development of a project, the CCP
is much more important than the REP, because develop-ability is more important
than reuse.

cCcp
Group for
maaniEnance

REP

Group

for reusers

Where in this space
does your component
fall?

CRP
Spiit to avoid
unneaded
releases

Figure 5.3: Cohension principles tension diagram. It shows how the 3 principles interact
with each other. The edges of the diagram describe the cost of abandoning
the principle on the opposite vertex.

98

5 Software Architecture Patterns

Generally, projects tend to start on the right hand side of the triangle, where the
only sacrifice is reuse. As the project matures, and other projects begin to draw
from it, the project will slide over to the left. This means that the component
structure of a project can vary with time and maturity.

The balance is almost always dynamic. That is, the partitioning that is appropriate
today might not be appropriate next year. As a consequence, the composition of
the components will likely jitter and evolve with time as the focus of the project
changes from develop-ability to reusability.

The Reuse/Release Equivalence Principle (REP)

Group for reusers.

People who want to reuse software components cannot, and will not, do so un-
less those components are tracked through a release process and are given release
numbers.

From a software design and architecture point of view, this principle means that the
classes and modules that are formed into a component must belong to a cohesive
group. The component cannot simply consist of a random hodgepodge of classes
and modules; instead, there must be some overarching theme or purpose that those
modules all share.

Classes and modules that are grouped together into a component should be re-
leasable together. The fact that they share the same version number and the same
release tracking, and are included under the same release documentation, should
make sense both to the author and to the users.

The Common Closure Principle (CCP)

Group for maintenance. Classes that change together are packaged together.

This is the Single Responsibility Principle restated for components. It says that a
component should not have multiple reasons to change.

For most applications, maintainability is more important than reusability. If the
code in an application must change, you would rather that all of the changes
occur in one component, rather than being distributed across many components.
If changes are confined to a single component, then we need to redeploy only the
one changed component. Other components that don’t depend on the changed
component do not need to be re-validated or redeployed.

The CCP prompts us to gather together in one place all the classes that are likely
to change for the same reasons. If two classes are so tightly bound, either physically
or conceptually, that they always change together, then they belong in the same

99

5 Software Architecture Patterns

component. This minimizes the workload related to releasing, re-validating, and
redeploying the software.

This principle is closely associated with the Open Closed Principle (OCP). Indeed,
it is “closure” in the OCP sense of the word that the CCP addresses. The OCP
states that classes should be closed for modification but open for extension. Be-
cause 100% closure is not attainable, closure must be strategic. We design our
classes such that they are closed to the most common kinds of changes that we
expect or have experienced.

The CCP amplifies this lesson by gathering together into the same component
those classes that are closed to the same types of changes. Thus, when a change
in requirements comes along, that change has a good chance of being restricted to
a minimal number of components.

The CCP tells us to separate classes into different components, if they change
for different reasons. Both principles can be summarized by the following sound
bite: Gather together those things that change at the same times and for the
same reasons. Separate those things that change at different times or for different
reasons.

The Common Reuse Principle (CRP)

Split to avoid unneeded releases. Classes that are used together are packaged
together.

Don’t force users of a component to depend on things they don’t need.

The Common Reuse Principle (CRP) is yet another principle that helps us to
decide which classes and modules should be placed into a component. It states
that classes and modules that tend to be reused together belong in the same
component.

When we depend on a component, we want to make sure we depend on every class
in that component. Put another way, we want to make sure that the classes that
we put into a component are inseparable—that it is impossible to depend on some
and not on the others. Otherwise, we will be redeploying more components than
is necessary, and wasting significant effort.

Therefore the CRP tells us more about which classes shouldn’t be together than
about which classes should be together. The CRP says that classes that are not
tightly bound to each other should not be in the same component.

Component Coupling

As the application continues to grow, we start to become concerned about creating
reusable elements. At this point, the CRP begins to influence the composition of

100

5 Software Architecture Patterns

the components. Finally, as cycles appear, the ADP is applied and the compo-
nent dependency graph jitters and grows. If we tried to design the component
dependency structure before we designed any classes, we would likely fail rather
badly. We would not know much about common closure, we would be unaware
of any reusable elements, and we would almost certainly create components that
produced dependency cycles. Thus the component dependency structure grows
and evolves with the logical design of the system.

Any component that we expect to be volatile should not be depended on by a
component that is difficult to change. Otherwise, the volatile component will also
be difficult to change.

The following principles deals with relationships between components.

The Acyclic Dependencies Principle (ADP)

Allow no cycles in the component dependency graph. The art of architecture often
involves forming the regrouped components into a directed acyclic graph. In a
good architecture, the direction of those dependencies is based on the level of the
components that they connect. In every case, low-level components are designed
so that they depend on high-level components.

If there are cycles in the dependency graph, such cycles make it very difficult to
isolate components. Unit testing and releasing become very difficult and error
prone. In addition, build issues grow geometrically with the number of modules.
Also, it can be very difficult to work out the order in which you must build the
components.

It is always possible to break a cycle of components and reinstate the dependency
graph as a DAG:

1. Apply DIP - create an interface between them! See the image below.

2. Create a new component that both classes depend on (so let’s imagine that
in component dependency graph, component A and component B has de-
pendency B->A which brings the circular dependency into the whole system,
because if they would be as A->B, then no circular dependency would be
possible).

101

5 Software Architecture Patterns

E Main
w—

/ Y

View : E Controllers

= i

4 Yy Y Y

i Presenters |—> E Interactors |« ! Authorizer

Dalabase T

Y

‘:": Ent\i:ies - rmissions
=

Figure 5.4: New component.

Stable Dependencies Principle (SDP)

e Depend in the direction of stability.

¢ We ensure that modules that are intended to be easy to change are not depended on
by modules that are harder to change. One sure way to make a software component
difficult to change, is to make lots of other software components depend on it. A
component with lots of incoming dependencies is very stable because it requires a
great deal of work to reconcile any changes with all the dependent components.

102

5 Software Architecture Patterns

Figure 5.5: A component X is a stable component. Three other components depend on
X, so it has three good reasons not to change. We say that X is responsible to
those 3 components. Conversely, X depends on nothing, so it has no external
influence to make it change. We say it is independent. Its dependents make
it hard to change the component, and its has no dependencies that might
force it to change.

Figure 5.6: A component Y is an unstable component. No other components depend on
Y, so we say that it is irresponsible. Y also has three components that it
depends on, so changes may come from three external sources. We say that
Y is dependent.

e The SDP says that the Instability metric of a component should be larger than
the Instability metrics of the components that it depends on. That is, I metrics
should decrease in the direction of dependency.

103

5 Software Architecture Patterns

— Instability can be calculated as I = Fanout/(Fanin + Fanout). It is a
number between 0 and 1 and 0 indicates maximally stable component, 1
indicates unstable component.

— Fan_ out are outgoing dependencies (number of classes inside of a given com-
ponent that depend on classes outside the component),

— Fan__in are incoming dependencies (number of classes outside this component
that depend on classes within the component).

Not all components should be stable. If all the components in a system were
maximally stable, the system would be unchangeable. This is not a desirable
situation. We want to design our component structure so that some components
are unstable and some are stable.

The Stable Abstractions Principle (SAP)

Abstractness increases with stability.

This sets up a relationship between stability and abstractness. On the one hand,
it says that a stable component should also be abstract so that its stability does
not prevent it from being extended. On the other hand, it says that an unstable
component should be concrete since it its instability allows the concrete code within
it to be easily changed.

Thus, if a component is to be stable, it should consist of interfaces and abstract
classes so that it can be extended. Stable components that are extensible are
flexible and do not overly constrain the architecture.

Design a Code Organization

Implementation details - this is the source of the devil. We want to get rid of it. There
are 4 ways of organizing code. Let’s consider, as for an example, that there is domain-
related code, and then 2 implementation details - web and database.

Package by Layer

e The simplest one, traditional horizontal layered architecture where we separate our

code based on what it does from a technical perspective.

For example, in this typical layered architecture, we have one layer for the web
code, one layer for our “business logic,” and one layer for database (with interfaces
implemented with each layer/package). So it can be used as a way to group similar
types of things.

It is a good way how to start. However, later, it is not sufficient to have a few
separated packages (for example), and you have to modularize further.

104

5 Software Architecture Patterns

e The purpose of a layered architecture is to separate code that has the same sort
of function. Web stuff is separated from business logic, which is in turn separated
from data access. The big problem here is that we can cheat by introducing some
undesirable dependencies, yet still create a nice, acyclic dependency graph. In this
architecture, it is possible to bypass the domain-related component, for example if
web is using database directly. Bypassing the business logic layer is undesirable,
especially if that business logic is responsible for ensuring authorized access to
individual records, for example. This organization is often called a relaxed layered
architecture, as layers are allowed to skip around their adjacent neighbor(s). This
architecture is not ideal.

Package by Feature

e This is a vertical slicing, based on related features or domain concepts. There is
for example just one package that implements all related - domain, database, and
web.

e Uncle Bob often sees software development teams realize that they have prob-
lems with horizontal layering (“package by layer”) and switch to vertical layering
(“package by feature”) instead. In his opinion, both are sub-optimal.

Ports and Adapters

o In this architecture, business/domain-focused code is independent and separate
from the technical implementation details such as frameworks and databases.

e The “inside” region contains all of the domain concepts, whereas the “outside”
region contains the interactions with the outside world (e.g., Uls, databases, third-
party integrations). The major rule here is that the “outside” depends on the
“inside” - never the other way around.

e So here would be one package for code related to a given domain, then another
one to database, and another one for web. They would interact through interfaces
implemented in domain package. The difference between this and “package by
layer” is, that here, interfaces are implemented in a given domain package, not in
each package.

Package by Components

e It’s a hybrid approach to above three, with the goal of bundling all of the respon-
sibilities related to a single coarse-grained component into a single package.

e In essence, this approach would bundle up the “business logic” and database code
into a component.

105

5 Software Architecture Patterns

e A key benefit of the “package by component” approach is that if you're writing
code that needs to do something with domain-related code, there’s just one place to
go the given component for it. Inside the component, the separation of concerns
is still maintained, so the business logic is separate from database, but that’s a
component implementation detail that consumers don’t need to know about.

106

5.1

5.2

5 Software Architecture Patterns

Single-Tiered / Monolithic Architecture

User interface and data access code are combined into a single program from a
single platform.

A monolithic application is self-contained, and independent from other computing
applications. The design philosophy is that the application is responsible not just
for a particular task, but can perform every step needed to complete a particular
function.

Some personal finance applications are monolithic in the sense that they help the
user carry out a complete task, end to end, and are private data silos rather than
parts of a larger system of applications that work together.

In its original use, the term "monolithic" described enormous main frame appli-
cations with no usable modularity. This — in combination with rapid increase in
computational power and therefore rapid increase in the complexity of the prob-
lems which could be tackled by software — resulted in unmaintainable systems and
the "software crisis".

Multi-Tiered / Multi-Layered Architecture

One of the most common architecture pattern, also known as the n-tier architecture
pattern.

It is a client-server architecture in which presentation, application processing, and
data management functions are physically separated.

Components within the layered architecture pattern are organized into horizontal
layers, each layer performing a specific role within the application (e.g., presenta-
tion logic or business logic).

This architectural pattern doesn’t specify the number and types of layers, but
it is usually 3 or 4 of them: presentation (UI), application (service layer), busi-
ness (domain layer), persistence (data access layer - the only thing communicates
with database). Business and persistence are sometimes put together. But big
applications may have even 5 or more layers.

While the concepts of layer and tier are often used interchangeably, one fairly com-
mon point of view is that there is indeed a difference. This view holds that a layer
is a logical structuring mechanism for the elements that make up the software solu-
tion, while a tier is a physical structuring mechanism for the system infrastructure.
For example, a three-layer solution could easily be deployed on a single tier, such
as a personal workstation. So basically, multi-layer architecture can be a single-tier
monolith.

107

5 Software Architecture Patterns

One of the powerful features of the layered architecture pattern is the separation
of concerns among components. Components within a specific layer deal only with
logic that pertains to that layer. For example, components in the presentation layer
deal only with presentation logic, whereas components residing in the business layer
deal only with business logic. This type of component classification makes it easy
to build effective roles and responsibility models into your architecture, and also
makes it easy to develop, test, govern, and maintain applications using this archi-
tecture pattern due to well-defined component interfaces and limited component
scope.

The layers of isolation concept means that changes made in one layer of the ar-
chitecture generally don’t impact or affect components in other layers: the change
is isolated to the components within that layer, and possibly another associated
layer. This means that each layer is independent of the other layers, thereby having
little or no knowledge of the inner workings of other layers in the architecture.

The layered architecture pattern is a solid general-purpose pattern, making it a
good starting point for most applications, particularly when you are not sure what
architecture pattern is best suited for your application.

Most developers and architects will resort to the de-facto standard traditional
layered architecture pattern (also called the n-tier architecture), creating implicit
layers by separating source-code modules into packages. Unfortunately, what often
results from this practice is a collection of unorganized source-code modules that
lack clear roles, responsibilities, and relationships to one another.

Advantages
— High testability

— Easier development (it is not so complex to implement)

Disadvantages

— Architecture sinkhole anti-pattern. Be careful on this pattern, that describes
the situation where requests flow through multiple layers of the architecture
as simple pass-through processing with little or no logic performed within
each layer.

Every layered architecture will have at least some scenarios that fall into the
architecture sinkhole anti-pattern. The key, however, is to analyze the per-
centage of requests that fall into this category. The 80-20 rule is usually a
good practice to follow to determine whether or not you are experiencing the
architecture sinkhole anti-pattern. It is typical to have around 20 percent
of the requests as simple pass-through processing and 80 percent of the re-
quests having some business logic associated with the request. However, if
you find that this ratio is reversed and a majority of your requests are simple

108

5.3

5.4

5.5

5.6

5 Software Architecture Patterns

pass-through processing, you might want to consider making some of the ar-
chitecture layers open, keeping in mind that it will be more difficult to control
change due to the lack of layer isolation.

— It tends to lend itself toward monolithic applications, even if you split the pre-
sentation layer and business layers into separate deployable units. So quickly
responding to changes in code can be hard. Also deployment can be difficult
for larger applications (there may be even a must of re-deployment). Also
performance and scalability may be in danger. It is much expensive to scale.

— Applications lacking a formal architecture are generally tightly coupled, brit-
tle, difficult to change, and without a clear vision or direction. As a result, it
is very difficult to determine the architectural characteristics of the applica-
tion without fully understanding the inner-workings of every component and
module in the system.

Client-Server Architecture

The server component will provide services to multiple client components. Clients
request services from the server and the server provides relevant services to those
clients. Furthermore, the server continues to listen to client requests.

Requests are typically handled in separate threads on the server.

Master-Slave Pattern

The master component distributes the work among identical slave components,
and computes a final result from the results which the slaves return.

Broker Pattern

This pattern is used to structure distributed systems with decoupled components.
These components can interact with each other by remote service invocations. A
broker component is responsible for the coordination of communication among
components.

Servers publish their services to a broker. Clients request a service from the broker,
and the broker then redirects the client to a suitable service from its registry.

Peer-to-Peer Architecture

Individual components are known as peers. Peers may function both as a client,
requesting services from other peers, and as a server, providing services to other

109

5 Software Architecture Patterns

peers. A peer may act as a client or as a server or as both, and it can change its
role dynamically with time.

Performance depends on the number of nodes, and security is difficult to be guar-
anteed.

It is highly robust in the failure of any given node.

Highly scalable in the terms of resources and computing power.

Model-View-Controller Pattern

This architectural pattern has 3 parts:
— model, that contains the core functionality and data

— view, that displays the information to the user (more than one view may be

defined)

— controller, that handles the input from the user
Django uses this pattern.

MVC is different from the layered architecture. Layered architecture does not
allow coupling like in MVC, where MVC components could talk to each other. In
contrast, layered architecture only allows message passing between layers. MVC
architecture is mostly used for presentation, but layered architecture is focused on
the entire system.

Representational State Transfer (REST)

As described in a dissertation by Roy Fielding, REST is an "architectural style"
that basically exploits the existing technology and protocols of the Web. RESTful
is typically used to refer to web services implementing such an architecture. So
RESTful service is a service layer that follows the REST architecture and HTTP
protocol methods. Service layer is a protocol independent interface to our applica-
tion logic. It is a common interface to your application logic that different clients
like a web interface, a command line tool or a scheduled job can use.!

So REST is the architecture and RESTful an adjective. Since it is not a formally
defined protocol there are many opinions on the details of implementing REST

APIs. However, the following five constraints must be present for any application
to be considered RESTful:?

"https://stackoverflow.com/questions/1568834/whats-the-difference-between-rest-restful
*https://blog.feathersjs.com/design-patterns-for-modern-web-apis-1£046635215

110

https://stackoverflow.com/questions/1568834/whats-the-difference-between-rest-restful
https://blog.feathersjs.com/design-patterns-for-modern-web-apis-1f046635215

5.9

5 Software Architecture Patterns

— Client-server: A client-server architecture allows a clear separation of con-
cerns. The client is responsible for requesting and displaying the data while
the server is taking care of data storage and application logic. One advantage
is that both sides can be developed separately as long as the agreed-upon
request format is followed.

— Statelessness: Communication between client and server is stateless. This
means that every client request contains all the information necessary for the
server to process the request. This further reduces server complexity since no
global state (other than a possibly shared database) is necessary and improves
scalability since any request can be processed by any server.

— Caching: Stateless client-server communication can increase server load since
some information may have to be transferred several times so requests that
only retrieve data should be cache-able.

— Layered system: A key feature of most networked systems. In the context
of REST, this means that a client can not necessarily tell if it is directly
communicating with the server or an intermediate (proxy).

— Uniform interface: REST defines a set of well defined operations that can

be executed on a resource.

Sometimes, using REST is not the best choice. There are many alternatives, such
as Websockets, or WebRTC, but it really depends on a given situation.

Event-Driven Architecture

It is distributed asynchronous architecture pattern used to produce highly scalable
applications.

It is highly adaptable and can be used for small applications and as well as large,
complex ones. The event-driven architecture is made up of highly decoupled,
single-purpose event processing components that asynchronously receive and pro-
cess events.

It is a relatively complex pattern to implement, primarily due to its asynchronous
distributed nature.

Perhaps one of the most difficult aspects of the event-driven architecture pattern
is the creation, maintenance, and governance of the event-processor component
contracts.

It consists of 2 main topologies:

— The Mediator

111

5 Software Architecture Patterns

Event
Queue

Event Mediator

v v v
G0 D (D

Event Event Event
Channel Channel (hannel

Event Processor Event Processor Event Processor Event Processor Event Processor
[rmdule] [mudule} (rmdule] [mudule] [modu Ie) (mud ule] [mndule) (mud ule] [mudule) [mnd ule]

[rmdule] [module} (module] [mudule] [modu Ie) [mud ule] [module) [mod ule] [mudule) [mnd ule]

Figure 5.7: Event-driven architectural pattern with mediator topology.

* This is commonly used when you need to orchestrate multiple steps within
an event through a central mediator.

* There are 4 main types of components: event queues, an event media-
tor, event channels, and event processors. The flow starts with a client
sending an event to an event queue, which is used to transport the event
to the event mediator. It receives the initial event, and orchestrates that
event by sending additional asynchronous events to event channels to ex-
ecute each step of the process. It is important to note that the event
mediator doesn’t actually perform the business logic necessary to process
the initial event; rather, it knows of the steps required to process the
initial event. Event processors listen on the event channels, receive the
event from event mediator, and execute specific business logic to pro-
cess the event. They are self-contained, independent, highly decoupled
architecture components that perform a specific task in the application
or system. It is important to keep in mind that in general, each event-
processor component should per form a single business task and not rely
on other event processors to complete its specific task. Event channels
are used by the event mediator to asynchronously pass specific processing
events related to each step in the initial event to the event processors.
The event channels can be for example message queues.

112

5 Software Architecture Patterns

* It is common to have anywhere from a dozen to several hundred event
queues in an event-driven architecture. It can be message queue, web
service endpoint, or so.

« There are 2 types of events: initial event (original event received by the
mediator) and processing event (these are generated by the mediator and
received by event-processing components).

— The Broker

Event Processor
3 — @
Chame () i)

s ———— S S,
Event Processor Event Processor

|module' |m0dule| ke " |m0dule. lmodulel
Event
[EDED Channel (EDED

Y

F N

e TR
Event Processor Event Processor
|m0dule. |module| > _ 1 |m0dule| |module|

EDED (el (o959) (o)

Figure 5.8: Event-driven architectural pattern with broker topology.

x This is used when you want to chain events together without the use of
a central mediator. Rather, the message flow is distributed across the
event processor components in a chain-like fashion through a lightweight
message broker.

* This topology is useful when you have a relatively simple event processing
flow and you do not want (or need) central event orchestration.

x There are 2 main types of architecture components within the broker
topology:

A broker component. It can be centralized or federated and contains
all of the event channels that are used within the event flow. The
event channels contained within the broker component can be mes-
sage queues, message topics, or a combination of both.

113

5 Software Architecture Patterns

An event processor component. Each event processor component is
responsible for processing an event and publishing a new event indi-
cating the action it just performed.

* Broker topology is all about the chaining of events to perform a business
function. The best way to understand the broker topology is to think
about it as a relay race. In a relay race, runners hold a baton and run
for a certain distance, then hand off the baton to the next runner, and
so on down the chain until the last runner crosses the finish line. Once
an event processor hands off the event, it is no longer involved with the
processing of that specific event.

o Advantages

The overall ability to respond quickly to changing environment is pretty good.
Since event-processor components are single-purpose and completely decou-
pled from other event processor components, changes are generally isolated
to one or a few event processors and can be made quickly without impacting
other components.

Deployment is also relatively easy due to decoupled nature of the components.
The broker topology tends to be easier to deploy than the mediator topology,
primarily because the event mediator component is somewhat tightly coupled
to the event processors: a change in an event processor component might also
require a change in the event mediator, requiring both to be deployed for any
given change.

Performance is in general very good, because of its asynchronous capabili-
ties; in other words, the ability to perform decoupled, parallel asynchronous
operations outweighs the cost of queuing and dequeuing messages.

Scalability is also high, because of highly independent and decoupled event
processors. Each event processor can be scaled separately, allowing for fine-
grained scalability.

o Disadvantages

Testing can be difficult mostly by the asynchronous nature of this pattern.

Development can be somewhat complicated due to the asynchronous nature
of the pattern as well as contract creation and the need for more advanced
error handling conditions within the code for unresponsive event processors
and failed brokers.

114

5 Software Architecture Patterns

5.10 Microkernel Architecture

Plug-in
Component

Plug-in
Component

Plug-in Core Plug-in
Component System Component

Plug-in Plug-in
Component Component

Figure 5.9: Microkernel architectural pattern.

e It is sometimes referred to as the plug-in architecture pattern.

o It is a natural pattern for implementing product-based applications (they are ones
that are packaged and made available for download in versions as a typical third-
party product).

e The microkernel architecture pattern allows you to add additional application fea-
tures as plug-ins to the core application, providing extensibility as well as feature
separation and isolation.

It consists of two types of architecture components: a core system and plug-in mod-
ules. Application logic is divided between independent plug-in modules and the
basic core system, providing extensibility, flexibility, and isolation of application
features and custom processing logic.

e The core system of the microkernel architecture pattern traditionally contains only
the minimal functionality required to make the system operational. Many oper-
ating systems implement the microkernel architecture pattern, hence the origin of
this pattern’s name. The core system needs to know about which plug-in modules
are available and how to get to them. One common way of implementing this is
through some sort of plug-in registry. This registry contains information about
each plug-in module, including things like its name, data contract, and remote
access protocol details.

e The plug-in modules are stand-alone, independent components that contain spe-
cialized processing, additional features, and custom code that is meant to enhance
or extend the core system to produce additional business capabilities. Generally,
plug-in modules should be independent of other plug-in modules, but you can cer-
tainly design plug-ins that require other plug-ins to be present. Either way, it is

115

5 Software Architecture Patterns

important to keep the communication between plug-ins to a minimum to avoid
dependency issues. Plug-in modules can be connected to the core system through
a variety of ways, including OSGi (open service gateway initiative), messaging,
web services, or even direct point-to-point binding (i.e., object instantiation). The
architecture pattern itself does not specify any of these implementation details,
only that the plug-in modules must remain independent from one another.

¢ Perhaps the best example of the microkernel architecture is the Eclipse IDE. Down-
loading the basic Eclipse product provides you little more than a fancy editor.
However, once you start adding plug-ins, it becomes a highly customizable and
useful product. Internet browsers are another common product example using the
microkernel architecture: viewers and other plug-ins add additional capabilities
that are not otherwise found in the basic browser (i.e., core system).

e Advantages

— One great thing about the microkernel architecture pattern is that it can be
embedded or used as part of another architecture pattern. For example, if this
pattern solves a particular problem you have with a specific volatile area of the
application, you might find that you can’t implement the entire architecture
using this pattern. In this case, you can embed the microservices architecture
pattern in another pattern you are using (e.g., layered architecture).

— The overall ability to respond quickly to changing environment is pretty good.
Changes can largely be isolated and implemented quickly through loosely
coupled plug-in modules. In general, the core system of most microkernel
architectures tends to become stable quickly, and as such is fairly robust and
requires few changes over time.

— Deployment is relatively easy. Depending on how the pattern is implemented,
the plug-in modules can be dynamically added to the core system at runtime
(e.g., hot-deployed), minimizing downtime during deployment.

— This pattern is relatively easy to test. Plug-in modules can be tested in
isolation and can be easily mocked by the core system to demonstrate or
prototype a particular feature with little or no change to the core system.

— This pattern does not naturally lend itself to high-performance applications,
in general, most applications built using the microkernel architecture pattern
perform well because you can customize and streamline applications to only
include those features you need.

« Disadvantages

— Because most microkernel architecture implementations are product based
and are generally smaller in size, they are implemented as single units and
hence not highly scalable. Depending on how you implement the plug-in mod-
ules, you can sometimes provide scalability at the plug-in feature level, but
overall this pattern is not known for producing highly scalable applications.

116

5 Software Architecture Patterns

— The microkernel architecture requires thoughtful design, and it is rather com-
plex to implement. Internal plug-in registries, plug-in granularity, and the
wide choices available for plug-in connectivity all contribute to the complex-
ity involved with implementing this pattern.

5.11 Space-Based Architecture

Processing Unit) (Processing Unit) [Processing Unit

[,
o

g(?g =
Virtualized Middleware

Messaging Data Processing Deployment
Grid Grid Grid Manager

Figure 5.10: Space-based architecture pattern.

Processing Unit

module module module

v

OIIrrIIrrn
In-Memory Data

F Y

A 4

[Data-Replication Engine]

Figure 5.11: A single processing unit component as a part of space-based architecture
pattern.

o It is also sometimes referred to as the cloud architecture pattern.

117

5 Software Architecture Patterns

The space-based architecture pattern is specifically designed to address and solve
scalability and concurrency issues. It is also a useful architecture pattern for
applications that have variable and unpredictable concurrent user volumes. Solving
the extreme and variable scalability issue architecturally is often a better approach
than trying to scale out a database or retrofit caching technologies into a non-
scalable architecture.

Most applications that fit into this pattern are standard websites that receive a
request from a browser and perform some sort of action.

High scalability is achieved by removing the central database constraint and using
replicated in-memory data grids instead. Application data is kept in memory
and replicated among all the active processing units. Processing units can be
dynamically started up and shut down as user load increases and decreases, thereby
addressing variable scalability. Because there is no central database, the database
bottleneck is removed, providing near-infinite scalability within the application.

Although the space-based architecture pattern does not require a centralized data-
store, one is commonly included to perform the initial in-memory data grid load
and asynchronously persist data updates made by the processing units.

There are 2 primary components within this architecture pattern:
— A processing unit

* This component contains the application components (or portions of the
application components). This includes web-based components as well as
backend business logic. The contents of the processing unit varies based
on the type of application—smaller web-based applications would likely
be deployed into a single processing unit, whereas larger applications may
split the application functionality into multiple processing units based on
the functional areas of the application.

x It typically contains the application modules, along with an in-memory
data grid and an optional asynchronous persistent store for fail-over.

x It also contains a replication engine that is used by the virtualized mid-
dleware to replicate data changes made by one processing unit to other
active processing units.

— A wvirtualized middleware

* It contains components that control various aspects of data synchroniza-
tion and request handling. Included in the virtualized middleware are
the messaging grid, data grid, processing grid, and deployment manager.

* It is essentially the controller for the architecture and manages requests,
sessions, data replication, distributed request processing, and process-
unit deployment.

118

5 Software Architecture Patterns

* It basically contains 4 components:

Messaging grid. The messaging grid manages input request and
session information. When a request comes into the virtualized-
middleware component, the messaging-grid component determines
which active processing components are available to receive the re-
quest and forwards the request to one of those processing units. The
complexity of the messaging grid can range from a simple round-robin
algorithm to a more complex next-available algorithm that keeps
track of which request is being processed by which processing unit.

Data grid. 1t is perhaps the most important and crucial component
in this pattern. The data grid interacts with the data replication
engine in each processing unit to manage the data replication between
processing units when data updates occur. Since the messaging grid
can forward a request to any of the processing units available, it is
essential that each processing unit contains exactly the same data in
its in-memory data grid.

Processing grid. It is an optional component within the virtualized
middleware that manages distributed request processing when there
are multiple processing units, each handling a portion of the applica-
tion.

Deployment manager. This component continually monitors response
times and user loads, and starts up new processing units when load
increases, and shuts down processing units when the load decreases.
It is a critical component to achieving variable scalability needs within
an application.

o Advantages

It is a good architecture choice for smaller web-based applications with vari-
able load.

The overall ability to respond quickly to changing environment is pretty
good. Because processing units (deployed instances of the application) can
be brought up and down quickly, applications respond well to changes related
to an increase or decrease in user load (environment changes). Architectures
created using this pattern generally respond well to coding changes due to
the small application size and dynamic nature of the pattern.

Although space-based architectures are generally not decoupled and distributed,
they are dynamic, and sophisticated cloud-based tools allow for applications
to easily be “pushed” out to servers, simplifying deployment.

High performance is achieved through the in-memory data access and caching
mechanisms build into this pattern.

119

5 Software Architecture Patterns

— High scalability come from the fact that there is little or no dependency on
a centralized database, therefore essentially removing this limiting bottleneck
from the scalability equation.

Disadvantages

— The space-based architecture pattern is a complex and expensive pattern to
implement.

— It is not well suited for traditional large-scale relational database applications
with large amounts of operational data.

— Achieving very high user loads in a test environment is both expensive and
time consuming, making it difficult to test the scalability aspects of the ap-
plication.

— Sophisticated caching and in-memory data grid products make this pattern
relatively complex to develop, mostly because of the lack of familiarity with
the tools and products used to create this type of architecture. Furthermore,
special care must be taken while developing these types of architectures to
make sure nothing in the source code impacts performance and scalability.

5.12 Service-Oriented Architecture (SOA)

One thing all service-based architectures have in common is that they are generally
distributed architectures, meaning that service components are accessed remotely
through some sort of remote access protocol (such as REST, AMQP, SOAP, and
SO on).

Distributed architectures offer significant advantages over monolithic and layered-
based architectures, including better scalability, better decoupling, and better con-
trol over development, testing, and deployment.

Maintaining service contracts, choosing the right remote-access protocol, dealing
with unresponsive or unavailable services, securing remote services, and managing
distributed transactions are just a few of the many complex issues you have to
address when creating service-based architectures.

Rather than use ACID transactions, service-based architectures rely on BASE
transactions. BASE is a family of styles that include basic availability, soft state,
and eventual consistency. Distributed applications relying on BASE transactions
strive for eventual consistency in the database rather than consistency at every
transaction.

Service components within a microservices architecture are generally single-purpose
services that do one thing really, really well. With SOA, service components can

120

5 Software Architecture Patterns

range in size anywhere from small application services to very large enterprise ser-
vices. In fact, it is common to have a service component within SOA represented
by a large product or even a subsystem.

Service granularity has the most potential impact on your choice of which archi-
tecture pattern is best suited for your situation !! SOA vs Microservices. If you are
able to break down the business functionality of your application into very small,
independent parts, then the microservices pattern is a likely candidate for your
architecture.

SOA is built on the concept of a share-as-much-as-possible architecture style,
whereas microservices architecture is built on the concept of a share-as-little-as-
possible architecture style. One way to achieve a bounded context and minimize
dependencies in extreme cases is to violate the Don’t Repeat Yourself (DRY) prin-
ciple and replicate common functionality across services to achieve total indepen-
dence. Another way is to compile relatively static modules into shared libraries
that service components can use in either a compile-time or runtime binding.

SOA, being a share-as-much-as-possible architecture, relies on both service orches-
tration and service choreography to process business requests.

In some cases you might find that the microservices pattern is a good initial archi-
tecture choice in the early stages of your business, but as the business grows and
matures, you begin to need capabilities such as complex request transformation,
complex orchestration, and heterogeneous systems integration. In these situations
you will likely turn to the SOA pattern to replace your initial microservices archi-
tecture. Of course, the opposite is true as well—you may have started out with
a large, complex SOA architecture, only to find that you didn’t need all of those
powerful capabilities that it supports after all.

If you find yourself in a heterogeneous environment where you need to integrate
several different types of systems or services using different protocols, chances are
that you will need to look toward SOA rather than microservices. However, if
all of your services can be exposed and accessed through the same remote-access
protocol (e.g., REST), then microservices can be the right choice.

121

5.13 Microservices Pattern

5 Software Architecture Patterns

|
e

Aplikacnl server, serviet kontejner atd.

Klient

Frontend

—>

Business
logika

Bezestavova sluZba #1

APl sluZby

Business
logika

Bezestavova sluZba #2

APl sluZby

Business
logika

APl sluZby

Slufba se zapamatovanim stav(

Datova
vrstva

Business
logika

Datové
uloZistsé

SluZba se zapamatovanim stavi

APl sluZby

Datova
vrstva

Business
logika

|ing
datové
UloZisté

Figure 5.12: Microservices architecture [CZ].

o Each service has only one job (Single Responsibility Principle).?

e More complex results are retrieved by combining services.

« Database per microservice (for metadata for example).

e Martin Fowler’s definition: "The microservice architectural style is an approach to
developing a single application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an HTTP resource

APIL

e Again, Martin Fowler: “Don’t even consider microservices unless you have a system

"

that’s too complex to manage as a monolith.”

o Martin Fowler?:

— “Almost all the successful microservice stories have started with a monolith

that grew too big and was broken up.”

3http://microservices.io/patterns/microservices.html
‘https://martinfowler.com/bliki/MonolithFirst.html

122

http://microservices.io/patterns/microservices.html
https://martinfowler.com/bliki/MonolithFirst.html

5 Software Architecture Patterns

— “Almost all the cases I've heard of a system that was built as a microservice
system from scratch, it has ended up in serious trouble.”

e The microservices architecture style naturally evolved from two main sources:
monolithic applications developed using the layered architecture pattern and dis-
tributed applications developed through the service-oriented architecture pattern.

o While the SOA pattern is very powerful and offers unparalleled levels of abstrac-
tion, heterogeneous connectivity, service orchestration, and the promise of aligning
business goals with IT capabilities, it is nevertheless complex, expensive, ubiqui-
tous, difficult to understand and implement, and is usually overkill for most ap-
plications. The microservices architecture style addresses this complexity by sim-
plifying the notion of a service, eliminating orchestration needs, and simplifying
connectivity and access to service components. In the mid-2000’s, service-oriented
architecture (SOA) took the IT industry by storm. SOA can be a big, expen-
sive, complicated architecture style that took too long to design and implement.
Microservices architecture holds the promise of being able to address some of the
problems associated with large, complex SOAs as well as the problems found with
big, bloated monolithic applications.

e They are about optimizing for speed. Also about how to faster develop and deploy.
Also the key is to manage (and reduce) dependencies.

e The microservices pattern is better suited for smaller, well partitioned web-based
systems rather than large-scale enterprise wide systems. The lack of a mediator
(messaging middleware) is one of the factors that makes it ill-suited for large-scale
complex business application environments.

o “Start with a small number of larger services first.”, Sam Newman. Just watch
out for transaction issues and too much inter-service communication, particularly
with microservices. These are good indicators that your services might be too
fine-grained.

e Microservices architecture favors service choreography over service orchestration,
primarily because the architecture topology lacks a centralized middleware com-
ponent.

— Service orchestration refers to the coordination of multiple services through
a centralized mediator.

— Service choreography refers to the coordination of multiple service calls with-
out a central mediator. The term inter-service communication is sometimes
used in conjunction with service choreography. With service choreography,
one service calls another service, which may call another service and so on,
performing what is also referred to as service chaining.

123

5 Software Architecture Patterns

e There is a lot of disadvantages®, such as complex networking, developers need to
learn a lot more stuff, lot of servers and databases to maintain (infrastructure
overhead). It is especially a disadvantage in smaller teams. The whole system is
fragmented, and it is needed to connect all parts. If the whole system is wrongly
designed, when a single microservice when fail, the whole system will fail. Com-
munication between processes is slower than inter-process communication (direct
function calls etc).

e It is needed to have as small dependencies between each individual microservices
as possible!

e So there is Monolithic Architecture as one extreme, Microservices Architecture on
the other side of the extreme, and SOA as something in between.

e One security design implemented in microservices that works well is to delegate
authentication to a separate service and place the responsibility for authorization
in the service itself. Although this design could be modified to delegate both au-
thentication and authorization to a separate security service, I prefer encapsulating
the authorization in the service itself to avoid chattiness with a remote security
service and to create a stronger bounded context with fewer external dependencies.

e SOA was “invented” before Microservices, and it is also based on techniques that
splits application to individual components, that should be independent from each
other and should communicate to each other. They should be ideally stateless.
Microservices can be seen as even more extreme version of SOA, in which we are
splitting the application even more (in SOA, there are “micromonoliths” with a
single shared database), so that it is possible to develop, maintain, and deploy
such components independently. In Microservices, we usually don’t have applica-
tion server, because it is an overkill for it. Also, in SOA, there are a lot more
communication protocols and in Microservices, we are trying to have simple mes-
sages. In SOA, the application should be ideally written in 1 language, but in
Microservices, there is no restriction.

e We need to constantly assess the way that we do things to ensure that we’re on
the right track. Even the classic PlanDo-Check-Act (PDCA) process is a variation
of the feedback loop. In software (as with everything we do in life) the longer the
feed-back loop, the worse the results are. And this happens because we have a
limited amount of capacity for holding information in our brains, both in terms of
volume and duration.

o Avoid dependencies and orchestration - one of the main challenges of the microser-
vices architecture pattern is determining the correct level of granularity for the
service components. If you find you need to orchestrate your service components
from within the user interface or API layer of the application, then chances are

Shttps://www.youtube.com/watch?v=1x0o-0gCVhTU

124

https://www.youtube.com/watch?v=1xo-0gCVhTU

5 Software Architecture Patterns

your service components are too fine-grained. Similarly, if you find you need to
perform inter-service communication between service components to process a sin-
gle request, chances are your service components are either too fine-grained or they
are not partitioned correctly from a business functionality standpoint.

A fairly common practice in most business applications implementing the microser-
vices architecture pattern, trading off the redundancy of repeating small portions
of business logic for the sake of keeping service components independent and sep-
arating their deployment.

If you find that regardless of the level of service component granularity you still can-
not avoid service-component orchestration, then it’s a good sign that this might not
be the right architecture pattern for your application. Because of the distributed
nature of this pattern, it is very difficult to maintain a single transactional unit
of work across (and between) service components. Such a practice would require
some sort of transaction compensation framework for rolling back transactions,
which adds significant complexity to this relatively simple and elegant architec-
ture pattern. Inter-service communication, which could force undesired couplings
between components, can be handled instead through a shared database.

One final consideration to take into account is that since the micro-services archi-
tecture pattern is a distributed architecture, it shares some of the same complex
issues found in the event-driven architecture pattern, including contract creation,
maintenance, and government, remote system availability, and remote access au-
thentication and authorization.

Some might think that the discussion around microservices is about scalability.
Most likely it’s not (well, in Netflix or Amazon, there are different scalability re-
quirements than in smaller companies). It’s all about again improving our lead
time and reducing the time between our releases. With microservices, we’re try-
ing to split a piece of this huge monolithic codebase into a smaller, well-defined,
cohesive, and loosely coupled artifact.

A very mature software deployment pipeline is an absolute requirement for any
microservices architecture. Some indicators that you can use to assess pipeline
maturity are the amount of manual intervention required, the amount of automated
tests, the automatic provisioning of environments, and monitoring.

Any refactoring of functionality between services is much harder than it is in a
monolith. But even experienced architects working in familiar domains have great
difficulty getting boundaries right at the beginning. By building a monolith first,
you can figure out what the right boundaries are, before a microservices design
brushes a layer of treacle over them.

The monolith-first is also called the strangler pattern. Having a stable monolith is
a good starting point because one of the hardest things in software is the identifi-
cation of boundaries between the domain model—things that change together, and

125

5 Software Architecture Patterns

things that change apart. Create wrong boundaries and you’ll be doomed with the
consequences of cascading changes and bugs.

e From a domain model perspective, microservices are all about boundaries: we’re
splitting a specific piece of our domain model that can be turned into an inde-
pendently releasable artifact. With a badly defined boundary, we will create an
artifact that depends too much on information confined in another microservice.
We will also create another operational pain: whenever we make modifications in
one artifact, we will need to synchronize these changes with another artifact. From
the beginning, it’s very difficult to guess which parts of the system change together
and which ones change separately. However, after months, or more likely years,
developers and business analysts should have a better picture of the evolution cycle
of each one of the bounded contexts.

e There are many different success stories about using NoSQL databases in different
contexts, and some of these contexts might fit your current enterprise context, as
well. But even if it does, we still recommend that you begin your microservices
journey on the safe side: using a relational database. First, make it work using your
existing relational database. Once you have successfully finished implementing and
integrating your first microservice, you can decide whether you (or) your project
will be better served by another type of database technology.

e Using the Decentralized Data Management characteristic of microservices architec-
tures, each one of our microservices should have its own separate database—which
could possibly, again, be a relational database or not. However, a legacy monolithic
relational database is very unlikely to simply migrate the tables and the data from
your current schema to a new separate schema or database instance, or even a new
database technology. We want to evolve our architecture as smoothly as possible:
it requires baby steps and carefully considered migrations in each one of these steps
to minimize disruption and, consequently, downtime. Moreover, a microservice is
not an island; it requires information provided by other services, and also provides
information required by other services. Therefore, we need to integrate the data
between at least two separate services: one can be your old monolithic application
and the other one will be your new microservice artifact.

e Sometimes you are not building microservices, but distributed monolith, which is
the worst. You can ask these questions for determining the answer on what you
are building (at least few of the following points):®

— A change to one microservice often requires changes to other microservices

— Deploying one microservice requires other microservices to be deployed at the
same time

— Your microservices are overly chatty

Shttps://www.simplethread.com/youre-not-actually-building-microservices/

126

https://www.simplethread.com/youre-not-actually-building-microservices/

5 Software Architecture Patterns

The same developers work across a large number of microservices

Many of your microservices share a datastore

— Your microservices share a lot of the same code or models

o Having a single, non-distributed codebase can be a huge advantage when starting
out with a new system. It allows you to more easily reason about your code, allows
you to more easily test your code, and it allows you to move quickly and change
quickly without having to worry about orchestration between services, distributed
monitoring, keeping your services in sync, eventual consistency, all of the things
you’ll run into with microservices.

e Production-ready microservices, requirements

Stability - Stable development cycle and deployment process.
Reliability - Reliable deployment process; planning, mitigating, and protect-

ing against the failures of dependencies; reliable routing and discovery.

Scalability - Well-defined quantitative and qualitative growth scales, Identi-

fication of resource bottlenecks and requirements, Careful, accurate capacity
planning, Scalable handling of traffic, The scaling of dependencies, and Scal-
able data storage.

Fault Tolerance and Catastrophe Prepareness

*x Potential catastrophes and failure scenarios are identified and planned
for.

* Single points of failure are identified and resolved.
* Failure detection and remediation strategies are in place.

* The microservice is tested for resiliency through code testing, load testing,
and chaos testing.

* Traffic is managed carefully in preparation for failure.

* Incident and outages are handled appropriately and productively.
Performance

* Proper task handling and processing.

+ Efficient utilization of resources.
Monitoring

x Proper logging of all important and relevant information.

« Useful graphical displays (dashboards) that are easily understood by any
developer in the company and that accurately reflect the health of the
services.

x Alerting on key metrics that is effective and actionable.

— Documentation

127

5 Software Architecture Patterns

* Thorough, updated, and centralized documentation containing all of the
relevant and essential information about the microservice.

x Organizational understanding at the developer, team, and ecosystem lev-
els.

e Advantages

The overall ability to respond quickly to changing environment is pretty good.
Due to the notion of separately deployed units, change is generally isolated
to individual service components, which allows for fast and easy deployment.

Services are generally deployed as separate units of software, resulting in the
ability to do “hot deployments” any time during the day or night.

Due to the separation and isolation of business functionality into independent
applications, testing can be scoped, allowing for more targeted testing efforts.
Also, since the service components in this pattern are loosely coupled, there is
much less of a chance from a development perspective of making a change that
breaks another part of the application, easing the testing burden of having to
test the entire application for one small change.

Because the application is split into separately deployed units, each service
component can be individually scaled, allowing for fine-tuned scaling of the
application.

Because functionality is isolated into separate and distinct service compo-
nents, development becomes easier due to the smaller and isolated scope.
There is much less chance a developer will make a change in one service
component that would affect other service components, thereby reducing the
coordination needed among developers or development teams.

o Disadvantages

Patterns,

While you can create applications implemented from this pattern that per-
form very well, overall this pattern does not naturally lend itself to high-
performance applications due to the distributed nature of the microservices
architecture pattern.

Recommendations, or Solutions

Pattern Topologies

« API REST-based topology, is useful for websites that expose small, self-contained
individual services through some sort of API. In this topology, these fine-grained
service components are typically accessed using a REST-based interface imple-
mented through a separately deployed web-based API layer.

e Application REST-based topology, which differs from the previous one in that
client requests are received through traditional web-based or fat-client business

128

Saga

5 Software Architecture Patterns

application screens rather than through a simple API layer. User-interface layer
of the application is deployed as a separate web application that remotely accesses
separately deployed service components (business functionality) through simple
REST-based interfaces. The service components in this topology differ from those
in the API-REST-based topology in that these service components tend to be
larger, more coarse-grained, and represent a small portion of the overall business
application rather than fine-grained, single-action services. This topology is com-
mon for small to medium-sized business applications that have a relatively low
degree of complexity.

Centralized messaging topology, which is similar to the previous application REST-
based topology except that instead of using REST for remote access, this topology
uses a lightweight centralized message broker. It is vitally important when looking
at this topology not to confuse it with the service-oriented architecture pattern
or consider it “SOA-Lite." The lightweight message broker found in this topology
does not perform any orchestration, transformation, or complex routing; rather, it
is just a lightweight transport to access remote service components. The centralized
messaging topology is typically found in larger business applications or applica-
tions requiring more sophisticated control over the transport layer between the
user interface and the service components. The benefits of this topology over the
simple REST-based topology discussed previously are advanced queuing mecha-
nisms, asynchronous messaging, monitoring, error handling, and better overall load
balancing and scalability. The single point of failure and architectural bottleneck
issues usually associated with a centralized broker are addressed through broker
clustering and broker federation (splitting a single broker instance into multiple
broker instances to divide the message throughput load based on functional areas
of the system).

Saga solves a problem how to maintain data consistency across multiple microser-
vices (since each have a separate database) without using distributed transactions.”

A saga is a sequence of local transactions. Each local transaction updates the
database and publishes a message or event to trigger the next local transaction in
the saga. If a local transaction fails because it violates a business rule then the
saga executes a series of compensating transactions that undo the changes that
were made by the preceding local transactions.

There can be choreography-based saga, and orchestration-based saga.

However, the programming model is more complex. For example, a developer must
design compensating transactions that explicitly undo changes made earlier in a
saga.

"https://microservices.io/patterns/data/saga.html

129

https://microservices.io/patterns/data/saga.html

5 Software Architecture Patterns

e In order to be reliable, a service must atomically update its database and publish
a message/event. It cannot use the traditional mechanism of a distributed trans-
action that spans the database and the message broker. Instead, it must use one
of the patterns listed below:

— The Database per Service pattern creates the need for this pattern.® There
could be also alternatives, such as tables per service, or schema per service.
If database per service is implemented, then joining data together can be
done on application (another service that would retrieve data from other
services and connects the information together), or with Command Query
Responsibility Segregation (CQRS).

— CQRS - maintain one or more materialized views that contain data from
multiple services. The views are kept by services that subscribe to events that
each services publishes when it updates its data. For example, the online store
could implement a query that finds customers in a particular region and their
recent orders by maintaining a view that joins customers and orders. The
view is updated by a service that subscribes to customer and order events.

— Ways to atomically update state and publish messages/events:
x Event sourcing® or

x Transactional Outboz'®

« Event sourcing persists the state of a business entity such an Order or a Customer
as a sequence of state-changing events. Whenever the state of a business entity
changes, a new event is appended to the list of events. Since saving an event is a
single operation, it is inherently atomic. The application reconstructs an entity’s
current state by replaying the events. Applications persist events in an event store,
which is a database of events. The store has an API for adding and retrieving an
entity’s events. The event store also behaves like a message broker. It provides an
API that enables services to subscribe to events. When a service saves an event in
the event store, it is delivered to all interested subscribers.

— Some entities, such as a Customer, can have a large number of events. In
order to optimize loading, an application can periodically save a snapshot of
an entity’s current state. To reconstruct the current state, the application
finds the most recent snapshot and the events that have occurred since that
snapshot. As a result, there are fewer events to replay.

— The CQRS must often be used with event sourcing.
— Advantages

Shttps://microservices.io/patterns/data/database-per-service.html
‘https://microservices.io/patterns/data/event-sourcing.html
Ohttps://microservices.io/patterns/data/transactional-outbox.html

130

https://microservices.io/patterns/data/database-per-service.html
https://microservices.io/patterns/data/event-sourcing.html
https://microservices.io/patterns/data/transactional-outbox.html

5 Software Architecture Patterns

* Event sourcing solves one of the key problems in implementing an event-
driven architecture and makes it possible to reliably publish events when-
ever state changes.

* Event sourcing-based business logic consists of loosely coupled business
entities that exchange events. This makes it a lot easier to migrate from
a monolithic application to a microservice architecture.

Disadvantages

* Learning curve, and that the event store is difficult to query since it re-
quires typical queries to reconstruct the state of the business entities.
That is likely to be complex and inefficient. As a result, the applica-
tion must use Command Query Responsibility Segregation (CQRS) to
implement queries. This in turn means that applications must handle
eventually consistent data.

« Transactional outbox

An alternative solution is Event sourcing.

Problem: How to reliably/atomically update the database and publish mes-
sages/events?

The main benefit is, that the service publishes high-level domain events.

A service that uses a relational database inserts messages/events into an out-
box table as part of the local transaction. A service that uses a NoSQL
database appends the messages/events to attribute of the record (e.g. doc-
ument or item) being updated. A separate Message Relay process publishes
the events inserted into database to a message broker.

It is potentially error prone since the developer might forget to publish the
message/event after updating the database. Or, the Message Relay process
might publish a message more than once.

131

5 Software Architecture Patterns

Kappa Architecture

Aplikacni server, serviet kontejner atd.
_— Frontend Business
I — Edpn
Klient
Y
Mikrosluzba #1
Zmeéna stavu
APl sluzby Business Datova Databaze
logika wrstva
Mikrosluzba #2 -
Zmeéna stavu
APl sluzby Business Datova
logika wrstva Databaze

Mikrosluzba #2

Zména stawvu
APl sluzby Business Datova Databaze

logika wrstva

i

Bezstavova mikrosluzba

Zmena stavu
APl sluzby Business

logika

) | (4] | C]

‘\ update databaze

\

) update databaze

7

G

~

Figure 5.13: Microservices architecture with Kappa topology [CZ].

¢ The main problem this architecture solves is data distribution and synchronization
of databases of each individual microservices.

e Database role is inverted in this architecture. Databases are not used for actual
data, but just for materialized view on data. Actual data (and even historical
ones) are stored in message broker (Apache Kafka used as a message broker for
example). Each microservice reads information from message broker, processes
this information, and applies the result on its database.

132

5 Software Architecture Patterns

e It is based on that primary source of information about state of application are
not SQL/NoSQL databases, but events recorded to streaming platform (Apache
Kafka for example).

o Databases themselves are also used in this architecture, as materialized views.
Every microservice that owns its database, sequentially receives each individual
events and changes the content of its database based on the data in the event. So
such databases have data that can be delayed.

e Besides of the streaming platform, it is still good that microservices are not com-
municating directly with each other, but by some intermediator, such as message
broker.

e Ideally, each microservice is autonomous and it also handles change of it state.
But it is good if a microservice is stateless. If shouldn’t share its internal state, or
any state, all it should share is API (it is kind of encapsulation).

o Advantages

— Microservices are isolated, there is no need to use any orchestration.

If there is a new microservice added, its database will be filled with data very
simply - just with filling all events from streaming platform.

Small blackout of some microservice does not lead to data loss, but can lead
to slowing down of some work from user point of view.

Migration of database, changing its schema or moving to totally different
database is not that difficult because of streaming platform.

— Audit log - the whole application has it because of the streaming platform.

Lambda Architecture

e Very straightforward architecture, in which the central piece is streaming platform
(such as Apache Kafka) or a message broker.

o Data acquired from broker are typically processed in several components (microser-
vices). One component is optimized for obtaining results in real time, another one
is for batch processing, another component may aggregate results from the previous
component, and so on.

133

6 Cloud Technologies

Cloud Computing

e Cloud computing is the on-demand delivery of compute power, database
storage, applications, and other IT resources through a cloud services
platform via the internet with pay-as-you-go pricing.

e The moment you need services like storage and compute or networking, they’re
available immediately without any advanced contract.

e It’s not just a substitute for what you have on-premises. Look at the idea of IT
as a series of actions: some of them are important to your business, and some of
them are common everywhere. Everybody needs compute, storage, and identity
management. AWS exists to eliminate those undifferentiated heavy lifting tasks
that your IT department needs, that everyone’s I'T department needs. This means
your business can spend time working on what is strategically unique to you rather
than repetitive common tasks that everyone has to do.

e AWS has a high level of security with many security features written especially for
your operations team. There are automation suites designed to deploy all of your
applications, all of your databases, all of your environments automatically. Also
there is a database as a service. A lot of other services, such as virtual reality,
game development, IoT, machine learning, the list is bigger than 140 items.

Types of Cloud Computing

e There is a range of deployment models, from all on-premises to fully deployed in the
cloud. Many users begin with a new project in the cloud, and they might integrate
some on-premises applications with these new projects in a hybrid architecture.
They might decide to keep some legacy systems on-premises. Over time, they
might migrate more and more of their infrastructure to the cloud, and they might
eventually reach an all-in-the-cloud deployment.

e There are 3 main types of Cloud Computing models

— Infrastructure as a Service (IaaS): this typically provides access to networking
features, computers (virtual or on dedicated hardware), and data storage
space. laaS provides you with the highest level of flexibility and management
control over your IT resources and is most similar to existing I'T resources
that many I'T departments and developers are familiar with today.

"https://aws.amazon.com/types-of-cloud-computing/

134

https://aws.amazon.com/types-of-cloud-computing/

6 Cloud Technologies

— Platform as a Service (PaasS): this removes the need for organizations to man-
age the underlying infrastructure (usually hardware and operating systems)
and allow you to focus on the deployment and management of your appli-
cations. This helps you be more efficient as you don’t need to worry about
resource procurement, capacity planning, software maintenance, patching, or
any of the other undifferentiated heavy lifting involved in running your ap-
plication.

— Software as a Service (SaaS): this provides a completed product that is run
and managed by the service provider. In most cases, people referring to
SaaS are referring to end-user applications. With a SaaS offering you do not
have to think about how the service is maintained or how the underlying
infrastructure is managed; you only need to think about how you will use
that particular piece software.

e There are 3 types of Cloud Computing Deployment Models

— Cloud: A cloud-based application is fully deployed in the cloud and all parts
of the application run in the cloud. Applications in the cloud have either been
created in the cloud or have been migrated from an existing infrastructure to
take advantage of the benefits of cloud computing. Cloud-based applications
can be built on low-level infrastructure pieces or can use higher level services
that provide abstraction from the management, architectonic, and scaling
requirements of core infrastructure.

— Hybrid: this is a way to connect infrastructure and applications between
cloud-based resources and existing resources that are not located in the cloud.
The most common method of hybrid deployment is between the cloud and
existing on-premises infrastructure to extend, and grow, an organization’s
infrastructure into the cloud while connecting cloud resources to internal sys-
tem.

— On-premises: using virtualization and resource management tools, this is
sometimes called “private cloud”. On-premises deployment does not provide
many of the benefits of cloud computing but is sometimes sought for its ability
to provide dedicated resources. In most cases this deployment model is the
same as legacy IT infrastructure while using application management and
virtualization technologies to try and increase resource utilization.

135

6.1

6 Cloud Technologies

Amazon Web Services

Since 2006, Amazon Web Services has been the world’s most comprehensive and
broadly adopted cloud platform.

AWS offers over 90 fully featured services for compute, storage, networking, database,
analytics, application services, deployment, management, developer, mobile, In-
ternet of Things (IoT), Artificial Intelligence (AI), security, hybrid and enterprise
applications, from 44 Availability Zones (AZs) across 16 geographic regions in the
U.S., Australia, Brazil, Canada, China, Germany, India, Ireland, Japan, Korea,
Singapore, and the UK.

The AWS Cloud infrastructure is built around Regions and Availability
Zones. AWS Regions provide multiple, physically separated, and isolated Avail-
ability Zones that are connected with low latency, high throughput, and highly
redundant networking.

AWS also offers managed compute options, like Amazon Lightsail, that allow you
to use compute capacity without worrying about provisioning or managing the
underlying hardware. In addition, AWS has other options that go beyond raw
server capacity. It offers container services that allow you to use Docker through
Elastic Container Service, or ECS, or Kubernetes through EKS. We also offer
pure serverless solutions, like AWS Lambda. With the flexibility of AWS compute
services, you can run virtually any application in the cloud.

AWS Lambda vs Amazon EC22

— EC2 requires management and provisioning of the environment. Each EC2
instances runs not just a full copy of an operating system, but a virtual copy
of all the hardware that the operating system needs to run. In contrast, what
AWS Lambda requires is enough system resources and dependencies to run a
specific program.

— The main difference between AWS Lambda vs EC2 (virtual server-based re-
sources) is the responsibility of provisioning and use cases to name a few.
AWS Lambda pricing is one of the biggest factors as well.

— With the computing resources like AWS Lambda, the computing resources
can scale and descends automatically based on real-time demands.

— The architecture of applications built using functions like AWS Lambda is
popularly called serverless architecture. AWS Lambda is a splendid example
of how the overhead of the operation team is going to be a distant memory.

— EC2 is a virtual cloud infrastructure service offered by AWS. This provides on-
demand computing resources through which you can create powerful servers
in the cloud.

*https://www.simform.com/aws-lambda-vs-ec2/

136

https://www.simform.com/aws-lambda-vs-ec2/

6 Cloud Technologies

— The entire hardware of EC2 is fragmented into multiple resources which are
offered in the form of instances which are scalable in terms of computing
memory and processing power.

— With Amazon EC2, you have the facility of provisioning virtual machines
as per your applications’ requirements. Such facility is provided on a utility
based subscription model where the user is billed as per their consumption of
resources.

— Lambdas use ECS and these containers are not available to configure manu-
ally. On the other hand, Lambdas are exposed through API Gateway which
functions as a URL router to your Lambdas.

— Setup & Management Environment

* AWS Lambda: Whether you need to set up a multiple or single environ-
ment, you do not need to do much of a work. You are not required to spin
up or provision containers or make them available for your applications,
scaling is fully automated.

*+ Amazon EC2: With EC2, setting up includes logging in via SSH and
manually installing Apache and doing a git clone. Along with that, you
need to install and configure all the required software in a manner which
is automated and reproducible.

— Performance

x* AWS Lambda: As per the official documentation, AWS Lambda has
the timeout of 300 seconds. This limits the type of tasks lambda can
deal with. Long-running functions and complex tasks aren’t a good fit.
Also, Lambda has a package size limit of 50 MB. More to that, “/tmp”
file storage has a limit of 512 MB.

x Amazon EC2: This has pretty flexible options. You can definitely work
with long running tasks since instances are available for different types
of requirements with different configurations. This makes EC2 a better
option over Lambda. Managing dependencies in EC2 isn’t a big problem
since it doesn’t have constraints when it comes to temporary storage.
Though what you should consider is the size of software packages and
corresponding instance CPU. This is because your CPU may undergo
burden if it’s not configured for the same.

e The serverless architecture

— Is a way to build and run applications and services without having to manage
the infrastructure behind it. Your application still runs on servers, of course,
but the server management is done by AWS. You no longer have to provision,
scale, and maintain services to run your applications, databases, or storage
systems. With the serverless architecture, you can execute your code only

137

6 Cloud Technologies

when needed, and scale automatically from a few requests per day to thou-
sands of requests per second. And you only pay for the compute time you
consume. There is no charge when your code’s not running.

— Serverless is the native architecture of the cloud that enables you to shift more
of your operational responsibilities to AWS, increasing your agility and inno-
vation. Serverless allows you to build and run applications and services with-
out thinking about servers. It eliminates infrastructure management tasks
such as server or cluster provisioning, patching, operating system mainte-
nance, and capacity provisioning. You can build them for nearly any type
of application or back-end service, and everything required to run and scale
your application with high availability is handled for you.

— AWS Lambda is serverless compute service from Amazon.
— So there are 4 main benefits:

* No server management.

* Flexible scaling.

x Pay for value.

x Automated high availability.

e AWS CloudFormation provides a common language for you to describe and
provision all the infrastructure resources in your cloud environment via JSON file.
CloudFormation allows you to use programming languages or a simple text file
to model and provision, in an automated and secure manner, all the resources
needed for your applications across all regions and accounts. This gives you a
single source of truth for your AWS resources. AWS CloudFormation is available
at no additional charge, and you pay only for the AWS resources needed to run
your applications.

« AWS Database Migration Service migrate databases to AWS quickly and se-
curely. The source database remains fully operational during the migration, min-
imizing downtime to applications that rely on the database. The AWS Database
Migration Service can migrate your data to and from most widely used commercial
and open-source databases. There is no need to install any drivers or applications,
and it does not require changes to the source database in most cases. You can be-
gin a database migration with just a few clicks in the AWS Management Console.
You only pay for the compute resources used during the migration process and any
additional log storage. Migrating a terabyte-size database can be done for as little
as $3.

e AWS Cost Explorer lets you visualize, understand, and manage your AWS costs
and usage over time. You can create custom reports (including charts and tabular
data) that analyze cost and usage data, both at a high level (e.g., total costs and
usage across all accounts) and for highly specific requests.

138

6 Cloud Technologies

e AWS Trusted Advisor is an online resource to help you reduce costs, increase
performance, and improve security by optimizing your AWS environment. Trusted
Advisor provides real-time guidance to help you provision your resources by fol-
lowing our best practices.

e A Region

— Region is a geographically self-contained area where all of the resources you
need for your application, all the compute, all the storage, are contained. All
resources you need for your application are there.

— A region is a collection of availability zones. It can consist of one or more
data centers. And you don’t have to worry about the distance between them
because AWS connects those availability zones with a proprietary high speed
fiber network, multiple lines between every availability zone so you can treat
it as a single area. But you run your application simultaneously across all of
the availability zones. The idea is it doesn’t matter what might happen to an
availability zone, because there might be some natural disaster, a hurricane,
a tornado, an earthquake that we don’t want you to worry about. It doesn’t
matter if there’s a temporary loss of connectivity to an availability zone be-
cause your application runs in both of them at the same time. This is how
you can not only be effective, be scalable, but also highly available all while
running in a single region of your choice.

— There are many many regions all over the world, and you need to decide which
is the best for your business:

* Latency: where are your customers located?
* Cost: not every region is priced the same.
* Compliance: legal restrictions (such as GDPR from Europe).

x Service availability: sometimes a new feature is released and is not avail-
able for some regions (it will run eventually, but that can take even a few
months).

e Amazon Virtual Private Cloud (VPC)

— In AWS, VPC is used for isolating a single application from the millions other
applications running on AWS.

— Amazon VPC lets you provision a logically isolated section of the AWS Cloud
where you can launch AWS resources in a virtual network that you define. You
have complete control over your virtual networking environment, including
the selection of your own IP address range, the creation of subnets, and the
configuration of route tables and network gateways. You can use both IPv4
and IPv6 in your VPC for secure and easy access to resources and applications.
You could create up to five non-default VPCs per AWS account per Region.

139

6 Cloud Technologies

— A VPC spans all the Availability Zones in the Region. After creating a VPC,

you can add one or more subnets in each Availability Zone. When you create
a subnet, you specify the CIDR block for the subnet, which is a subset of the
VPC CIDR block. Each subnet must reside entirely within one Availability
Zone, and it can’t span Availability Zones.?

The point of VPC is to provide a frame/box that all of your application
lives inside, and the idea is nothing comes in the box, nothing gets out of
the box, without your specific permission, and whether you’re filtering by
network protocol, or port, or IP address, or by user or other information, you
maintain complete control of all the assets inside your VPC.

When you create a VPC, you also then divide the space inside the VPC into
subnets.

An important concept that’s used in networking on AWS is CIDR, or Classless
Inter-Domain Routing. CIDR network addresses are allocated in a virtual
private cloud (VPC) and in a subnet by using CIDR notation.

But VPC stops all traffic in and all traffic out, and if we’re going to put a
web server in there, well, that means nobody can talk to it. We have to add
a IGW (Internet Gateway) and attach it to the VPC and then she’ll create
a route table and associate that with the subnet, so that any communication
that wants to talk to assets in this subnet, can come in and out of that IGW.

Then, once we defined VPC, subnet, IGW (associated with a given subnet),
then we can launch EC2 instance in that subnet.

Also, we can add a database to it. But a database shouldn’t go in the same
public access subnet where my web servers are, because I never want anyone
from the outside, at least, in my business case, to access a database directly.
So, we're going to make another subnet inside my VPC (private one). But
we will not associate this new subnet to IGW. We want that only our web
server can communicate with the database - and it can do it, because they
are in the same VPC.

If you want to achieve high-availability, you should create another subnet
(with different Availability Zone), so that you have two pairs: two private
and two public subnets. All 4 are in the same VPC (we don’t have to change
this, because VPC is already multi-availability Zone structure). And we have
to associate our route table (Public Route Table) to both public subnets.

Now you need ELB - Elastic Load Balancer, that will balance the input load.
So you have to associate ELB with two EC2 instances, so that it doesn’t
matter which one gets the traffic.

— There’s one more type of gateway we can add into your VPC and that’s called

a virtual private gateway. And a virtual private gateway, or a VGW, can

3https:

//docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

140

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html

6 Cloud Technologies

be created and attached, and this can even be associated with your private
subnets. So that if you've got a DBA, that is connecting over your own
on-premises data center, she can connect through the VGW over a VPN
connection and never go through the IGW. And that’s it.

¢« AWS Lambda

— It lets you run code without provisioning or managing servers. You pay only
for the compute time you consume - there is no charge when your code isn’t
running.

— With Lambda, you can run code for virtually any type of application or
backend service - all with zero administration. Just upload your code and
Lambda takes care of everything required to run and scale your code with
high availability.*

— Lambda natively supports 6 programming languages: Node.js, Python, Java,
C#, Ruby, and Go.

AWS Container Services

o Amazon Elastic Container Service (Amazon ECS)

— ECS? is a highly scalable, high-performance container orchestration service
that supports Docker containers.

— It allows you to run and scale containerized applications on AWS. With simple
API calls, you can launch and stop Docker-enabled applications, query the
complete state of your application, and more.

o Amazon Elastic Container Service for Kubernetes (Amazon EKS)

— EKSS makes it straightforward to deploy, manage, and scale containerized
applications that use Kubernetes on AWS. Amazon EKS runs the Kubernetes
management infrastructure for you across multiple AWS availability zones to
eliminate a single point of failure.

— Amazon EKS is certified Kubernetes conformant so you can use existing tool-
ing and plugins from partners and the Kubernetes community.

— Applications running on any standard Kubernetes environment are fully com-
patible and can be easily migrated to Amazon EKS.
e AWS Fargate

— Fargate” is a compute engine for Amazon ECS and Amazon EKS that allows
you to run containers without having to manage servers or clusters.

‘https://aws.amazon.com/lambda/
Shttps://aws.amazon.com/ecs/
Shttps://aws.amazon.com/eks/
"https://aws.amazon.com/fargate/

141

https://aws.amazon.com/lambda/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/

6 Cloud Technologies

— You just define your application as you do for Amazon ECS. You package
your application into task definitions, specify the CPU and memory needed,
define the networking and IAM policies that each container needs, and upload
everything to Amazon ECS. After everything is setup, AWS Fargate launches
and manages your containers for you.

Computing Services

e Amazon Elastic Compute Cloud (Amazon EC2)

— EC2 is a web service that provides secure and resizable compute capacity
in the cloud. It’s designed to make web-scale cloud computing easier for
developers.

— It is a compute service that allows you to provision virtual servers on demand.
Each virtual server you provision is called an EC2 instance. Just about any-
thing you can do with a server in a traditional sense, you can do with an EC2
instance.

— AWS supports a range of operating systems including Linux, Ubuntu, Win-
dows, and more. To select the operating system, you choose an Amazon Ma-
chine Image, or what we call an AMI. An AMI contains information about
how you want your instance to be configured, including the operating system
and possible applications to be installed on that instance.

— You can launch one or many instances from a single AMI, which would create
multiple instances that all share the same configuration.

— Beyond the operating system, you can also configure the instance type and
size, which correspond to the amount of compute, memory, and networking
capabilities available per instance. This allows you to control the underlying
hardware and the capacity of that hardware with just a few clicks or lines of
code.

— If you choose an EC2 instance type and then later realized a different type
would have been better suited for the application, you can easily change the
underlying hardware. If you decide that you want to resize your EC2 instance,
that isn’t a problem in the cloud either. EC2 is a resizable resource with a
few clicks in the console, or it can be done programmatically through an APIT
call. This enables you to embrace change over time.

— Amazon EC2 provides a wide selection of instance types that are optimized
to fit different use cases. Instance types comprise varying combinations of
CPU, memory, storage, and networking capacity. They give you the flexibil-
ity to choose the appropriate mix of resources for your applications. Each
instance type includes one or more instance sizes, which allows you to scale
your resources to the requirements of your target workload.

e Amazon Lightsail

142

6 Cloud Technologies

— This is the easiest way to get started with AWS for developers, small busi-
nesses, students, and other users who need a simple virtual private server
(VPS) solution.

— Lightsail provides developers compute, storage, and networking capacity, and
it also provides capabilities to deploy and manage websites and web appli-
cations in the cloud. Lightsail includes everything you need to launch your
project quickly--a virtual machine, solid state drive (SSD)-based storage, data
transfer, Domain Name System (DNS) management, and a static IP--for a
low, predictable monthly price.

— If you want to just simplify the whole process of EC2. You don’t want to go
through the process of spinning up an EC2 instance. You just want a solution
to running your application.

— Lightsail has a number of pre-built options, you simply select, launch, and
you're done. For example, you might just want a WordPress site. Lightsail
has one already built for you.

Storage Services
There are 2 different approaches: object storage, and block storage.

o Amazon Elastic Block Store (Amazon EBS)

— The most common block storage. It provides persistent block storage volumes
for use with Amazon EC2 instances in the AWS Cloud. Each Amazon EBS
volume is automatically replicated inside an Availability Zone to protect you
from component failure, which offers high availability and durability. Amazon
EBS volumes offer the consistent and low-latency performance that you need
to run your workloads.

— When you launch your EC2 instance, you’re going to need some kind of block
storage to go with it. It’s part of the boot volume or maybe it’s a separate
data volume. And AWS has racks of unused storage that you can provision
to sizes as large as you need up to many terabytes in size.

— EBS can be attached to only 1 instance of EC2.

— When you launch the EC2 instance, the boot volume can attach directly to
your EC2 instance, as well as the data volume. These volumes live indepen-
dent of the EC2 instance themselves. In fact, they may already exist before
your EC2 instance launches. When it launches, it simply finds the volume
and attaches it the same way you might have an old drive from a laptop.

— Amazon EBS provides a range of options that allow you to optimize storage
performance and cost for your workload. These options are divided into two
major categories: SSD-backed storage for transactional workloads, such as
databases and boot volumes (performance depends primarily on IOPS), and
hard disk drive (HDD)-backed storage for throughput-intensive workloads,

143

6 Cloud Technologies

such as MapReduce and log processing (performance depends primarily on
MB/s).

— The Elastic Volume feature of Amazon EBS allows you to dynamically in-
crease capacity, tune performance, and change the type of live volumes with
no downtime or performance impact. This allows you to easily right-size your
deployment and adapt to performance changes.

o Amazon Simple Storage Service (Amazon S3)

— This stores data as objects within resources that are called buckets. You can
store as many objects as you want within a bucket, and you can write, read,
and delete objects in your bucket. Objects can be up to 5 TB in size.

— You can control access to both the bucket and the objects (who can create,
delete, and retrieve objects in the bucket for example), and view access logs
for the bucket and its objects. You can also choose the AWS Region where a
bucket is stored to optimize for latency, minimize costs, or address regulatory
requirements.

— With Amazon S3, you pay only for what you use. There is no minimum fee.
There is even a calculator® for estimating your monthly bill.

o Amazon Elastic File System (Amazon EFS)

— It provides simple, scalable, elastic file storage for use with AWS Cloud ser-
vices and on-premises resources. It is straightforward to use, and it offers a
simple interface that allows you to create and configure file systems quickly
and easily.

— Amazon EFS is designed to provide massively parallel shared access to thou-
sands of Amazon EC2 instances. When an Amazon EF'S file system is mounted
on Amazon EC2 instances, it provides a standard file system interface and
file system access semantics, which allows you to seamlessly integrate Ama-
zon EFS with your existing applications and tools. Multiple Amazon EC2
instances can access an Amazon EFS file system at the same time, thus al-
lowing Amazon EFS to provide a common data source for workloads and
applications that run on more than one Amazon EC2 instance.

— This is designed to be a regionally distributed, meaning it doesn’t live inside
any one subnet, a regionally distributed file store that can automatically at-
tach to multiple EC2 instances simultaneously, many EC2 instances, including
the instances in different VPCs.

— This way, if you need a corporate directory, a corporate file store where every-
one connects to the same document store, EFS can be that solution for you.
In fact, using EFS File Sync, you can even have that directory connect to
your on-premises data center, allowing your people at your home network to

8https://calculator.s3.amazonaws.com/index.html

144

https://calculator.s3.amazonaws.com/index.html

6 Cloud Technologies

think they’re connecting to home directories when really they’re being stored
inside EFS on AWS, with all the security and regional distribution that comes
automatically.

Database Services

o Amazon Relational Database Service (Amazon RDS)

It makes it straightforward to set up, operate, and scale a relational database
in the cloud. It provides cost-efficient and resizable capacity while automating
time-consuming administration tasks such as provisioning hardware, setting
up the database, patching, and making backups.

Amazon RDS currently supports 6 database engines:
* Amazon Aurora
* PostgreSQL
x MySQL

MariaDB

Oracle

Microsoft SQL Server

*

*

*

e Amazon DynamoDB

DynamoDB is a fully managed, fast, and scalable NoSQL database solution
that delivers reliable performance at any scale.

You do not have to manage any of the underlying infrastructure running that
database. When you need to start using DynamoDB, you simply create a
table, define your throughput needs, and you can start populating it with
your data.

Its a fully managed cloud database, and it supports both document and key-
value store models.

To compare this with Amazon RDS, with RDS when you need to use it,
you define how much capacity you need in terms of memory and CPU. So
you're defining the underlying hardware that we’re running your database on.
With Dynamo, you simply just tell us how much you need talk to that table
by provisioning your throughput needs. With Amazon DynamoDB, you can
start small, specify the throughput you need, and easily scale your capacity
requirements in seconds, as needed.

It automatically partitions data over multiple servers to meet your requested
capacity. As your data grows, AWS handles the management of scaling your
database. There is no limit on table size, which means you can store any
amount of data. DynamoDB synchronously replicates your data across three
facilities in an AWS Region to ensure redundancy and availability.

145

6 Cloud Technologies

— A table is a collection of items, and each item is a collection of at-
tributes.

— The first is the partition key, which is a simple primary key, composed of
one attribute. For example, if we are storing music data, our primary key
should be "Artist". The next to the partition key is a sort key. That should
be a song title. When a partition and a sort key exist in a table, it is referred
to as a "composite primary key' and is composed of two attributes. And
then we have a set of attributes.

— A "secondary index" is a data structure that contains a subset of attributes
from a table, along with an alternate key to support query operations. A
table can have multiple secondary indexes, which give you application access
to many different query patterns.

x A "local secondary index" is an index that has the same partition key
as the base table, but a different sort key.

x A "global secondary index" is an index that has a partition key and
a sort key that can be different from those based on the base table.

Monitoring AWS - Amazon CloudWatch

o With Amazon CloudWatch, you can monitor your cloud infrastructure intelligently.
CloudWatch will collect data from your cloud-based infrastructure in one central-
ized location. With this data, you can create statistics, which drive operational
procedures using features such as CloudWatch Alarms.

e CloudWatch also allows you to visualize the statistics about your environment
through dashboards. You can use out-of-the-box dashboards to view built-in or
custom metrics, and you can build your own custom dashboards or partner with
a wide range of consultants through the Amazon Partner Network.

¢ Amazon CloudWatch Events delivers a near real-time stream of system events
that describe changes in AWS resources. Using simple rules that you can quickly
set up, you can match events and route them to one or more target functions or
streams. CloudWatch Events becomes aware of operational changes as they occur.

e You can use Amazon CloudWatch Logs to monitor, store, and access your log
files from Amazon EC2 instances, AWS CloudTrail, Amazon Route 53, and other
sources. You can then retrieve the associated log data from CloudWatch Logs.

Elastic Load Balancing (ELB)

e It automatically distributes incoming application traffic across multiple targets,
such as Amazon EC2 instances, containers, and IP addresses. It can handle the
varying load of your application traffic in a single Availability Zone or across mul-
tiple Availability Zones.

146

6 Cloud Technologies

o ELB offers 3 types of load balancers that all feature the high availability, automatic
scaling, and robust security that are necessary to make your applications fault-
tolerant:

— An Application Load Balancer operates at the request level (Layer 7),
routing traffic to targets - such as EC2 instances, microservices and containers
- within Amazon VPC, based on the content of the request. It’s ideal for the
advanced load balancing of Hypertext Transfer Protocol (HTTP) and Secure
HTTP (HTTPS) traffic.

— A Network Load Balancer operates at the connection level (Layer 4),
routing connections to targets - such as Amazon EC2 instances, microservices,
and containers - within Amazon VPC, based on IP protocol data. It’s ideal
for load-balancing Transmission Control Protocol (TCP) traffic.

— The Classic Load Balancer provides basic load balancing across multiple
Amazon EC2 instances, and it operates at both the request level and the
connection level.

e At some point, our N instances aren’t going to be able to handle that demand,
and we’re going to need more EC2 instances. Instead of launching these instances
manually, we want to do it automatically. So, we’re going to use what’s called
Auto Scaling. Auto Scaling is what allows us to provision more capacity on
demand, depending on different thresholds that we set, and we can set those in
CloudWatch.

¢ Amazon EC2 Auto Scaling helps you maintain application availability, and it
allows you to dynamically scale your Amazon EC2 capacity up or down automat-
ically according to conditions that you define.

e You can also use Amazon EC2 Auto Scaling to dynamically scale Amazon EC2
instances. Dynamic scaling automatically increases the number of Amazon EC2
instances during demand spikes to maintain performance and decrease capacity
during lulls, which can help reduce costs. Amazon EC2 Auto Scaling is well-suited
to applications that have stable demand patterns, or applications that experience
hourly, daily, or weekly variability in usage.

Security

e Amazon Shared Responsibility Model - security and compliance are shared
responsibilities between AWS and the customer. This shared model can help relieve
a customer’s operational burden because Amazon operate, manage, and control
the components from the host operating system and virtualization layer down to
the physical security of the facilities where the service operates. The customer
is responsible for (and manages) the guest operating system (including updates
and security patches) and other associated application software, in addition to the
configuration of the AWS-provided security group firewall.

147

6 Cloud Technologies

e AWS responsibility: Security of the Cloud: Amazon is responsible for protect-
ing the infrastructure that runs all of the services that are offered in the AWS
Cloud. This infrastructure is composed of the hardware, software, networking,
and facilities that run AWS Cloud services.

e Customer responsibility: Security in the Cloud: Customer responsibility will be
determined by the AWS Cloud services that a customer selects. This determines
the amount of configuration work the customer must perform as part of their
security responsibilities.

o AWS Identity Access Management (IAM)

— An TAM role is an TAM entity that defines a set of permissions for making
AWS service requests. IAM roles are not associated with a specific user
or group. Instead, trusted entities assume roles such as an IAM user, an
application, or an AWS service like EC2.

— So TAM is a web service that helps you securely control access to AWS re-
sources. Amazon typically uses credentials from IAM Users or IAM Roles to
authenticate with AWS when making API calls. They control the permissions
for which APT actions those Users or Roles can perform with TAM Policies.

Machine Learning Services

e Amazon Lex

— It provides the advanced deep learning functionalities of automatic speech
recognition and NLP that powers Amazon Alexa.

— The only language that is supported in this moment is English.
— Amazon Lex uses Amazon Polly that uses text-to-speech, so it is possible to
build the complete chat bot with Amazon Lex.
e Amazon Polly

— This service provides text to speech functionality.

API
e Amazon API Gateway

— It is a fully managed service that makes it easy for developers to create,
publish, maintain, monitor, and secure APIs at any scale. With a few clicks
in the AWS Management Console, you can create an API that acts as a
“front door” for applications to access data, business logic, or functionality
from your back-end services, such as workloads running on Amazon Elastic
Compute Cloud (Amazon EC2), code running on AWS Lambda, or any web
application.

148

6 Cloud Technologies

— Amazon API Gateway supports mock integrations for API methods. This
feature enables API developers to generate API responses from API Gateway
directly, without the need for an integration backend. As an API developer,
you can use this feature to unblock dependent teams that need to work with
an API before the project development is complete.

e Amazon CloudFront

— It is a global content delivery network (CDN) service that securely delivers
data, videos, applications, and APIs to your viewers with low latency and
high transfer speeds.

— CloudFront is integrated with AWS — including physical locations that are
directly connected to the AWS global infrastructure, as well as software that
works seamlessly with services including AWS Shield for DDoS mitigation,
Amazon S3, Elastic Load Balancing or Amazon EC2 as origins for your ap-
plications.

149

7 Interviews

o (Technical interviews) Note down, and replicate the question! After all is written
down and properly understood, you can start with solution. So that me and
interviewer are not disconnected from each other. Clarify the question! Don’t
waste time if/when you don’t fully understand the question! Write it down and
also maybe along with some example! Define inputs and outputs of some algorithm,
if suitable.

Do not talk only about the job that already exists, but about the job that you
hope the organization will create for you. For this, it is necessary to know:

what do you like about the organization,

what needs and challenges (don’t use the word “problems”) can be seen in a
given field,

what skills do you have to help them (with concrete examples from the past),
and what is unique about you and these skills, and

what will them cost them not to hire you in the long run.

e Observe 50-50 rule. Mix speaking and listening fifty-fifty in the interviews. Answer
something between 20 seconds to 2 minutes.

o What is success? (Bessie Anderson Stanley (1879-1952))

To laugh often and much;
To win the respect of intelligent people and the affection of children;

To earn the appreciation of honest critics and endure the betrayal of false
friends;

To appreciate beauty;
To find the best in others;

To leave the world a bit better, whether by a healthy child, a garden patch
or a redeemed social condition;

To know even one life has breathed easier because you have lived;

This is to have succeeded.

CV and Linkedin

Show what you did, how you did it, and what the results were.
Ideally, you should try to make the results "measurable" somehow.

150

7 Interviews

— CV shouldn’t be written in the first person.

— CV and Linkedin should highlight your accomplishments, not job
duties or descriptions. Don’t be task-based, be achievement-based. Write
your resume to emphasize what you did well, not what your duties entailed.

— For US positions, do not include age, marital status, or nationality. This sort
of personal information is not appreciated by companies, as it creates
a legal liability for them.

— Being too language focused: When recruiters at some of the top tech
companies see resumes that list every flavor of Java on their resume, they
make negative assumptions about the caliber of candidate. There is a belief in
many circles that the best software engineers don’t define themselves around a
particular language. Thus, when they see a candidate seems to flaunt which
specific versions of a language they know, recruiters will often bucket the
candidate as "not our kind of person.

e Cover Letter

— Brief cover that summarizes the whole long resume. It is a report, and you
have to make it personal and specific to a concrete job. Research the compa-
nies!

151

7 Interviews

7.1 Questions for Employer

e Technical questions

— Code reviews? Coding standards? Agile team?

— Who is in team? (seniors, architects, ...)

— Ratio of testers to developers to PMs? What is their interaction like?
Architecture?

My duties? What should I accomplish? Report to whom?

— How would I be evaluated, how often, and by whom?

If you don’t mind my asking, I'm curious as to why you yourself decided to
work at this organization? What don’t you like about this company (what is
this company’s greatest flaw)?

— What would you expect from me in the first 90 days?
— Room for initiative and freedom, vs strict specifications from someone.

— Operating system, etc.?

e Non-technical questions
— About position

* Why has this position become available? (Someone left / was promoted,
or they are expanding a team, or creating a new one. Is there a possibility
to become teamleader in the future?)

* How would you define success in this or related position?
* How do you see this position evolving in the next 3 years?
— Company

* What business problem are they trying to solve? (Everybody likes a
candidate who shows genuine interest, motivation, and curiosity for a
problem that is close to their hearts.)

* What are the company’s highest goals for the next year?
* What significant changes has this company gone through in the past 5
years?
o Benefits question

— Type of employment, flexibility, growth opportunities, perks (table tennis,
gym, ...).

Benefits, stock options, annual bonuses?

— The ability to work from home?

— Possibility to be transferred to another country or team?

152

7.2

7 Interviews

General Things to Know

STAR method - Situation, Target, Action, Result - you can use this for
solving almost any problem using this “template”.

Throughout the interview, keep in mind: employers don’t really care about your
past; they only ask about it, in order to try to predict your future (behavior) with
them, if they decide to hire you.

Do not bad-mouth your previous employer(s) during the interview, even if they
were terrible people. Therefore, during the hiring-interview, before you answer
any question the employer asks you about your past, you should pause to think,
“What fear about the future caused them to ask this question about my past?”

Basically approach them not as a “job-beggar” but humbly as a resource person,
able to produce better work for that organization than any of the people who
worked in that position, previously.

Salary negotiation should only happen when they have definitely said they want
you; prior to that, it’s pointless. Before accepting a job offer, always ask about
salary. However, it has been proven that a person who mention salary (as a
number) first, generally loses. Research the range that the employer likely has in
mind, and then define an interrelated range for yourself, relative to the employer’s
range.

Arrogance is a red flag, but you still want to make yourself sound impressive. So
how do you make yourself sound good without being arrogant? By being specific!

After an interview, when it went good, you may ask: “When may I expect to hear
from you?”

Flower exercise - it is a self-inventory technique with 7 petals, because there are
7 ways of thinking about yourself, or 7 ways of describing who you are:
— people - the kinds of people you most prefer to work with

— workplace - your favorite workplace, or working conditions—indoors/outdoors,
small company/large company, windows/no windows, etc

— skills - what you can do, and what your favorite functional /transferable skills
are

— purpose - your goals or sense of mission and purpose for your life. Alterna-
tively, or in addition, you can get even more particular and describe the goals
or mission you want the organization to have, where you decide to work

— knowledge - what you already know—and what your favorite knowledge or
interests are among all that stuff stored away in your head

153

7 Interviews

— salary - your preferred salary and level of responsibility— working by your-
self, or as a member of a team, or supervising others, or running the show—
that you feel most fitted for, by experience, temperament, and appetite

— geography - your preferred surroundings—here or abroad, warm/cold, north/-
south, east/west, mountains/coast, urban/suburban/rural /rustic - where you’d
be happiest, do your best work, and would most love to live, all year long, or
part of the year, or vacation time, or sabbatical - either now, five years from
now, or at retirement

What the Flower Diagram does is describe who you are in all 7 ways, summarized
on one page, in one graphic. After all, you are not just one of these things; you
are all of these things. The Flower Diagram is a complete picture of you.

154

7 Interviews

7.3 Behavioral Questions

e Getting to Know You
— What motivates you at work?
— Describe what your preferred supervisor - employee relationship looks like.

— What two or three things are most important to you in your work?

« Knowledge & Interests
— What do you think are the most pressing issues in this field?
— What challenges does this position present for you?
— What do you think it takes to be successful in this organization?

— What do you know about our company?

e« Readiness & Experience
— What is your greatest strength/weakness?
— Tell me about a problem you have encountered and how you dealt with it?
— Tell me about a mistake you made and what you learned from it.
— What experience do you have in this field?

— How have you prepared yourself to switch fields?

e Goals, Motivation & Values
— Why do you think you will like this field?

— Describe a time when you saw some problem and took the initiative to correct
it rather than waiting for someone else to do it.

— Give me an example of a time you were able to be creative with your work.
What was exciting or difficult about it?

— Tell me about a time you were dissatisfied in your work. What could have
been done to make it better?
¢ Teamwork

— Describe a time when you worked closely with someone who had a very dif-
ferent personality than you.

— Tell me about a time you faced a conflict while working on a team. How did
you handle the conflict?

— Describe a time when you struggled to build a relationship with someone
important.

Tell me about a time you needed to get information from someone who wasn’t
very responsive. What did you do?

155

7 Interviews

e Ability to Adapt

— Tell me about a time you were under a lot of pressure. What was the situation
and how did you get through it?

— Describe a time when your team or company was undergoing change. How
did it impact you, and how did you adapt?

— Tell me about your very first job. What did you do to learn the ropes?

— Tell me about a time you failed. How did you deal with this situation?

e Time Management Skills

— Tell me about a long-term project that you managed. How did you keep
organized and make sure everything was moving along as planned?

— Tell me about a time you set a goal for yourself. How did you ensure that
you would meet your objective?

— Give me an example of a time you managed multiple responsibilities. How
did you handle it?
e Communication Skills

— Tell me about a time you successfully persuaded someone to understand your
perspective at work.

— Describe a time when you were the primary “expert”. How did you ensure
that everyone understood you?

— Describe a time when you could only use written communication to get your
ideas across to your team.

156

7 Interviews

7.4 Software Engineering Interview Preparation

e These steps are good to perform during technical question:

1.
2.

Listen carefully. Listen to every detail.

Draw an example. Never try to solve it in your head and never use mini-
malist example. Write specific and sufficiently large example, not some special
case.

3. State a brute force. Write sub-optimal PoC that works.

Optimize. What you can - unused information, space / time trade-offs, using
hash table, ...

Walk through. Go through your algorithm to see if it actually still works.
Write pseudo-code if you like.

Implement. Yes, implementation is here, in such later “phase”. Start with
top left corner, write beautiful code with nicely named variables, good spac-
ing, and so on. This part is very important.

Test. See if the implementation works.

00 questions

These are mostly about demonstrating that you understand how to create elegant, main-
tainable object-oriented code. Poor performance on this type of question may raise se-
rious red flags. These questions are intentionally vague in order to test whether you’ll
make assumptions or if you’ll ask clarifying questions. You may even want to go through
the "six Ws": who, what, where, when, how, and why. There are multiple steps
that needs to be taken:

1. Handle ambiguity

2. Define the core objects

3. Analyze relationships

4. Investigate actions

Data Structures

o Hash Tables (also known as Associative Arrays)

o They are data structures, (Python dict implements it) that are associative arrays,
that maps keys to values in effective way (for highly effective lookup).

— Very common implementation is with an array of linked lists (because of

possible collisions) and a hash code function.

157

7 Interviews

A hash table uses a hash function to compute an index into an array of slots,
from which the correct value can be found.

Two different keys could have the same hash code, as there may be an infinite
number of keys and a finite number of ints. Two different hash codes could,
of course, map to the same index.

To retrieve the value pair by its key, you repeat this process. Compute the
hash code from the key, and then compute the index from the hash code.
Then, search through the linked list for the value with this key. If the number
of collisions is very high, the worst case runtime is O(NN), where N is the
number of keys. However, we generally assume a good implementation that
keeps collisions to a minimum, in which case the lookup time is O(1).

Alternatively, we can implement the hash table with a balanced binary search
tree. This gives us an O(log N) lookup time. The advantage of this is poten-
tially using less space, since we no longer allocate a large array. We can also
iterate through the keys in order, which can be useful sometimes.

o Arrays = Lists

They are automatically resizable. The array or list will grow as you append
items. In some languages, like Java, arrays are fixed length. The size is
defined when you create the array.

An array that resizes itself as needed while still providing O(1) access. A
typical implementation is that when the array is full, the array doubles in
size. Each doubling takes O(n) time, but happens so rarely that its amortized
insertion time is still O(1).

e Linked Lists

A linked list is a data structure that represents a sequence of nodes. In a
singly linked list, each node points to the next node in the linked list. A
doubly linked list gives each node pointers to both the next node and the
previous node.

Unlike an array, a linked list does not provide constant time access to a
particular "index" within the list. This means that if you’d like to find the
Kth element in the list, you will need to iterate through K elements. The
benefit of a linked list is that you can add and remove items from the beginning
of the list in constant time. For specific applications, this can be useful.

A linked list saves memory. It only allocates the memory required for values
to be stored. In arrays, you have to set an array size before filling it with
values, which can potentially waste memory.

Linked list nodes can live anywhere in the memory. Whereas an array requires
a sequence of memory to be initiated, as long as the references are updated,
each linked list node can be flexibly moved to a different address.

158

7 Interviews

o Stacks & Queues

— A stack uses LIFO (last-in first-out) ordering. There are push(item), pop(),
peek(), isEmpty() operations. Unlike an array, a stack does not offer constant-
time access to the ith item. However, it does allow constant time adds and
removes, as it doesn’t require shifting elements around.

— A queue implements FIFO (first-in first-out) ordering. There are add(), re-
move(item), peek(), isEmpty() operations.

— One place where queues are often used is in breadth-first search or in imple-
menting a cache.
e Heap (as a datastructure, not heap in memory)*

— Common implementation of a priority queue. A priority queue contains items
with some priority. You can always take an item out in the priority order from
a priority queue. You can also use stack or queue for implementation of a
priority queue, but it works differently. This is because the priority of an
inserted item in stack increases, and the priority of an inserted item in a
queue decreases.

— A heap is one of the tree structures and represented as a binary tree (see
below).

— If you implement this structure with an array, you have to manipulate with
nodes/items by indices:

* A root node | i = 1, the first item of the array
% A parent node | parent(i) =i/2
« A left child node | left(i) = 2i
* A right child node | right(i) = 2i + 1
— You need 2 operations to build a heap from an arbitrary array:

x min__heapify: make some node and its descendant nodes meet the heap
property. It basically iterates though all non-leaf nodes, from reversed
order (for =n/2 downto 1), and it calls procedure build__min__heap.

x build_min__heap: produce a heap from an arbitrary array.
— It is possible to implement heapsort with heap:
Build a heap from an arbitrary array with build__min_ heap.
Swap the first item with the last item in the array.
Remove the last item from the array.

Run min__heapify to the first item.

A

Back to step 2.

'https://towardsdatascience.com/data-structure-heap-23d4c78a6962

159

https://towardsdatascience.com/data-structure-heap-23d4c78a6962

7 Interviews

e Trees, Tries, and Graphs

— A tree is a data structure composed of nodes. Each tree has a root
node. (Actually, this isn’t strictly necessary in graph theory, but it’s usually
how we use trees in programming). The root node has 0+ child nodes. Each
child node has 0+ child nodes, and so on. The tree cannot contain cycles.
The nodes may or may not be in a particular order, they could have any
data type as values, and they may or may not have links back to their parent
nodes.

— A binary search tree - every node fits a specific ordering property: all left
descendants <= n < all right descendants. This must be true for each node
n. Note that this inequality must be true for all of a node’s descendants, not
just its immediate children.

Balanced trees - balancing a tree does not mean the left and right sub-trees
are exactly the same size. One way to think about it is that a "balanced" tree
really means something more like "not terribly imbalanced”. It’s balanced
enough to ensure O(logn) times for insert and find, but it’s not necessarily as
balanced as it could be. Two common types of balanced trees are Red-black
trees and AVL trees.

Complete binary tree - it is a binary tree in which every level of the tree
is fully filled, except for perhaps the last level. To the extent that the last
level is filled, it is filled left to right. So if, for example, there is binary tree
that has depth = 3, but with just 3 nodes instead of 4, it is complete binary
tree if there are leaf nodes from left to right except the the most right one.
If leaf node in the middle is missing, or the very left one, it is not complete
binary tree.

Full binary trees - every node has either zero or two children. That is, no
nodes have only one child.

Perfect binary tree - one that is both full and complete. All leaf nodes will
be at the same level, and this level has the maximum number of nodes. Note
that perfect trees are rare in interviews and in real life, as a perfect
tree must have exactly 2% — 1 nodes (where k is the number of levels). In an
interview, do not assume a binary tree is perfect.

— Binary tree traversal

* In-Order Traversal means to "visit" (often, print) the left branch, then
the current node, and finally, the right branch.

* Pre-Order Traversal visits the current node before its child nodes. Root
is always the first node visited.

* Post-Order Traversal visits the current node after its child nodes. Root
is always the last node visited.

— Binary heaps

160

7 Interviews

* See heap data structure above, they can be also used for implementation
of priority queue.

* Max-heaps are essentially equivalent to min-heaps, but the elements are
in descending order rather than ascending order.

* A min-heap is a complete binary tree (that is, totally filled other than
the rightmost elements on the last level) where each node is smaller than
its children. So, leave nodes don’t have to be placed in total order!
Actually, absolutely no order of nodes in this tree is guaranteed, only
that a given node must be smaller than each of its children! The root,
therefore, is the minimum element in the tree. There are 2 operations:
insert and extract _min. We insert at the rightmost spot so as to maintain
the complete tree property. Then, we "fix" the tree by swapping the new
element with its parent, until we find an appropriate spot for the element.
We essentially bubble up the minimum element. This takes O(logn) time,
where n is the number of nodes in the heap. Extraction of min: first,
we remove the minimum element and swap it with the last element in
the heap (the bottom-most, right-most element). Then, we bubble down
this element, swapping it with one of its children (always the smaller
one) until the min-heap property is restored. This operation also takes
O(logn) time.

— Tries (Prefix trees)

x A trie is a variant of an n-ary tree in which characters are stored at
each node. Each path down the tree may represent a word. The * nodes
(sometimes called "null nodes") are often used to indicate complete words.
Root is special node that has no character value.

* A node in a trie could have anywhere from 1 through ALPHABET SIZE
+ 1 children.

* Very commonly, a trie is used to store the entire (English) language for
quick prefix lookups. While a hash table can quickly look up whether a
string is a valid word, it cannot tell us if a string is a prefix of any valid
words. A trie can do this very quickly. A trie can check if a string is a
valid prefix in O(K) time, where K is the length of the string.

— Graphs

x A tree is actually a type of graph, but not all graphs are trees. Simply
put, a tree is a connected graph without cycles. A graph is simply
a collection of nodes with edges between (some of) them.

* Graphs can be either directed (like the following graph) or undirected.

x The graph might consist of multiple isolated sub-graphs. If there is a
path between every pair of vertices, it is called a "connected graph”.

x The graph can also have cycles. An "acyclic graph" is one without cycles.

161

Algorithms

7 Interviews

* They can be implemented using adjacency list (for example, a class Graph

with one member - a list of nodes, and class Node, that contain members
value and list of children), or adjacency matrices (NzN boolean matrix,
where N is the number of nodes, and matrix[i][j] = true indicates the
edge from node i to j). In the adjacency list representation, you can
easily iterate through the neighbors of a node. In the adjacency matrix
representation, you will need to iterate through all the nodes to identify
a node’s neighbors.

The two most common ways to search a graph are depth-first search
and breadth-first search. In depth-first search (DFS), we start at
the root (or another arbitrarily selected node) and explore each branch
completely before moving on to the next branch. That is, we go deep first
(hence the name depth-first search) before we go wide. In breadth-first
search (BFS) we start at the root (or another arbitrarily selected node)
and explore each neighbor before going on to any of their children. That
is, we go wide (hence breadth-first search) before we go deep. DFS is
often preferred if we want to visit every node in the graph. If we want
to find the shortest path (or just any path) between two nodes, BFS is
generally better.

DEFS can be recursive algorithm, and BFS iterative one. If you are asked
to implement BF'S, the key thing to remember is the use of the queue.

Bidirectional search is used to find the shortest path between a source
and destination node. It operates by essentially running two simultaneous
breadth-first searches, one from each node. When their searches collide,
we have found a path.

e DBreadth-First Search

e Depth-First Search

e DBinary Search

— Here, we look for an element x in a sorted array by first comparing x to the
midpoint of the array.

— If x is less than the midpoint, then we search the left half of the array. If x is
greater than the midpoint, then we search the right half of the array.

— We then repeat this process, treating the left and right halves as sub-arrays.
Again, we compare x to the midpoint of this sub-array and then search either
its left or right side. We repeat this process until we either find x or the
sub-array has size O.

e Bubble Sort

162

7 Interviews

— Runtime is O(n?). Space complexity is O(1).

— We start at the beginning of the array and swap the first two elements if the
first is greater than the second. Then, we go to the next pair, and so on,
continuously making sweeps of the array until it is sorted. In doing so, the
smaller items slowly"bubble" up to the beginning of the list.

o Selection Sort
— Runtime is O(n?). Space complexity is O(1).

— Find the smallest element using a linear scan and move it to the front (swap-
ping it with the front element). Then, find the second smallest and move it,
again doing a linear scan. Continue doing this until all the elements are in
place.

e Merge Sort
— Runtime is O(nlogn). Space complexity is O(n).

— Merge sort divides the array in half, sorts each of those halves, and then
merges them back together. Each of those halves has the same sorting al-
gorithm applied to it. Eventually, you are merging just two single element
arrays. It is the "merge" part that does all the heavy lifting.

o Quick Sort

— Runtime is O(nlogn) in average, but the worst case is O(n?). Space com-
plexity is O(logn).

— In quick sort, we pick a median (usually just a random element) and partition
the array, such that all numbers that are less than the partitioning element
come before all elements that are greater than it. The partitioning can be
performed efficiently through a series of swaps.

— If we repeatedly partition the array (and its sub-arrays) around an element,
the array will eventually become sorted. However, as the partitioned element
is not guaranteed to be the median (or anywhere near the median), our sorting
could be very slow.

e Radix Sort

— Runtime is O(kn), where k is the number of passes of the sorting algorithm,
and n is the number of elements.

— It is a sorting algorithm for integers (and some other data types) that takes
advantage of the fact that integers have a finite number of bits. In Radix
sort, we iterate through each digit of the number, grouping numbers by each
digit.

— For example, if we have an array of integers, we might first sort by the first
digit, so that the Os are grouped together. Then, we sort each of these

163

7 Interviews

groupings by the next digit. We repeat this process sorting by each subsequent
digit. until finally the whole array is sorted.

o The Sieve of Eratosthenes

For generating list of prime numbers by generating all values from 1 to a given
max number, and cross-out prime numbers sequentially (first prime number
is 2, then 4, then 6, and so on; the next prime number is always incremented
from the last one, so then it would be 3, and then 6, 9, and so on). Eventually
there will be only those left, which are actual prime numbers.

This can be implemented with “flags” list, that contain True/False values
for all numbers. Crossing out is labeling from True (from initialization) to
False.

+ (Optional) Very advanced:

MapReduce is used widely in system design to process large amounts of data.
As its name suggests, a MapReduce program requires you to write a Map
step and a Reduce step. The rest is handled by the system.

AVL trees are a way of implementing tree balancing.

Red-black trees are a type of self-balancing binary search tree. They require
a bit less memory than AVL trees, and can rebalance faster (which means
faster insertions and removals), so they are often used in situations where the
tree will be modified frequently.

B-Trees: A self-balancing search tree (not a binary search tree) that is com-
monly used on disks or other storage devices. It is similar to a red-black tree,
but uses fewer I/O operations.

Dijkstra’s algorithm is used for calculating the shortest path in graph.

A*: Find the least-cost path between a source node and a goal node (or one
of several goal nodes). It extends Dijkstra’s algorithm and achieves better
performance by using heuristics.

Floyd-Warshall algorithm: Finds the shortest paths in a weighted graph with
positive or negative weight edges (but no negative weight cycles).

Bellman-Ford algorithm: Finds the shortest paths from a single node in a
weighted directed graph with positive and negative edges.

Graph coloring: A way of coloring the nodes in a graph such that no two
adjacent vertices have the same color. There are various algorithms to do
things like determine if a graph can be colored with only K colors.

P, NP, and NP-Complete: P, NP, and NP-Complete refer to classes of prob-
lems.

« P problems are problems that can be quickly solved (where "quickly"
means in polynomial time).

164

7 Interviews

* NP problems are those for which the problem instances, where the answer
is “yes”, have proofs verifiable in polynomial time; so their solution can be
quickly verified. An equivalent definition of NP is the set of decision prob-
lems solvable in polynomial time by a non-deterministic Turing machine.
This definition is the basis for the abbreviation NP; "non-deterministic,
polynomial time." These two definitions are equivalent because the al-
gorithm based on the Turing machine consists of two phases, the first
of which consists of a guess about the solution, which is generated in a
non-deterministic way, while the second phase consists of a deterministic
algorithm that verifies if the guess is a solution to the problem.

« It is easy to see that the complexity class P (all problems solvable, de-
terministically, in polynomial time) is contained in NP (problems where
solutions can be verified in polynomial time), because if a problem is
solvable in polynomial time then a solution is also verifiable in polyno-
mial time by simply solving the problem. But NP contains many more
problems, the hardest of which are called NP-complete problems.

x NP-Complete problems are a subset of NP problems that can all be re-
duced to each other (that is, if you found a solution to one problem, you
could tweak the solution to solve other problems in the set in polynomial
time).

Concepts

e Bit Manipulation

e There are 2 right shifts: logical shift and it fills 0 from left side, and arithmetic
shift and it keeps the sign bit - so it divides a number basically by 2).

— Sequence of all 1s in signed integer (as in binary number) is —1.

o Memory (Stack vs. Heap)

Stack is used for static memory allocation and Heap for dynamic memory allo-
cation, both stored in the computer’s RAM. In a multi-threaded situation each
thread will have its own completely independent stack but they will share the
heap. Stack is thread specific and Heap is application specific. The stack is at-
tached to a thread, so when the thread exits the stack is reclaimed. The heap is
typically allocated at application start-up by the runtime, and is reclaimed when
the application (technically process) exits. The size of the stack is set when a
thread is created. The size of the heap is set on application start-up, but can
grow as space is needed (the allocator requests more memory from the operating
system).

By the way, the amount of memory that get’s assigned to an application depends on
the computer’s architecture and will vary across most devices, but the variable that
remains constant is the five parts of an application’s memory which are the heap,

165

7 Interviews

stack, initialized data segment (global and static variables that are initialized when
a file gets compiled), uninitialized data segment (all global and static variables that
are initialized to zero or do not have explicit initialization in source code), and the
text segment (also known as the code segment, contains the machine instructions
which make up your program. The text segment is often read-only and prevents a
program from accidentally modifying its instructions).

Stack

— Is a special region of your computer’s memory that stores temporary variables
created by each function (including the main() function). The stack is a
"LIFO" (last in, first out) data structure, that is managed and optimized by
the CPU quite closely. Every time a function declares a new variable, it is
"pushed" onto the stack. Then every time a function exits, all of the variables
pushed onto the stack by that function, are freed (that is to say, they are
deleted). Once a stack variable is freed, that region of memory becomes
available for other stack variables.

— The advantage of using the stack to store variables, is that memory is managed
for you. You don’t have to allocate memory by hand, or free it once you don’t
need it any more. What’s more, because the CPU organizes stack memory
so efficiently, reading from and writing to stack variables is very fast.

— A key to understanding the stack is the notion that when a function exits,
all of its variables are popped off of the stack (and hence lost forever). Thus
stack variables are local in nature.

— Summary: the stack grows and shrinks as functions push and pop local vari-
ables there is no need to manage the memory yourself, variables are allocated
and freed automatically the stack has size limits stack variables only exist
while the function that created them, is running.

Heap

— The heap is a region of your computer’s memory that is not managed auto-
matically for you, and is not as tightly managed by the CPU. It is a more
free-floating region of memory (and is larger). To allocate memory on the
heap, you must use malloc() or calloc(), which are built-in C functions. Once
you have allocated memory on the heap, you are responsible for using free()
to deallocate that memory once you don’t need it any more. If you fail to
do this, your program will have what is known as a memory leak. That is,
memory on the heap will still be set aside (and won’t be available to other
processes). As we will see in the debugging section, there is a tool called
valgrind that can help you detect memory leaks.

— Unlike the stack, the heap does not have size restrictions on variable size
(apart from the obvious physical limitations of your computer). Heap memory
is slightly slower to be read from and written to, because one has to use

166

7 Interviews

pointers to access memory on the heap. Heap size is only limited by the size
of virtual memory.

— Unlike the stack, variables created on the heap are accessible by any function,
anywhere in your program. Heap variables are essentially global in scope.

— Another performance hit for the heap is that the heap, being mostly a global
resource, typically has to be multi-threading safe, i.e. each allocation and
deallocation needs to be - typically - synchronized with "all" other heap ac-
cesses in the program.

Big O (Time & Space complexity)

» Notel: 1+2+3—|—,,_+n:w:n2

o Note2: 20421 4224 4 on=29ntl 1

logak
logab

Note3: log conversion (base) from base 2 to base b: logyk =

Testing

At their surface, testing questions seem like they’re just about coming up with an ex-
tensive list of test cases. And to some extent, that’s right. You do need to come up with
a reasonable list of test cases. The interviewers want to do the following from you:

e Big picture understanding.
e Knowing how the pieces fit together.
e Organization.

e Practical point of view.

167

7 Interviews

7.5 Machine Learning Interview Preparation

e Top companies for Data Science: Microsoft, IBM, Facebook, Amazon, Google,
Accenture, Apple, Capital One, Uber, B.A Hamilton.

168

7 Interviews

7.6 Topics

Good sources: Machine Learning Interview Preparation (from Udacity).

¢ Computer Science Fundamentals and Programming Techniques

All from above:

Data structures: Lists, stacks, queues, strings, hash maps, vectors, matrices,
classes & objects, trees, graphs, etc.

Algorithms: Recursion, searching, sorting, optimization, dynamic program-
ming, etc.

Computability and complexity: P vs. NP, NP-complete problems, big-O
notation, approximate algorithms, etc.

Computer architecture: Memory, cache, bandwidth, threads & processes,
deadlocks, etc.

« Probability and Statistics

Basic probability: Conditional probability, Bayes rule, likelihood, indepen-
dence, etc.

Probabilistic models: Bayes Nets, Markov Decision Processes, Hidden Markov
Models, etc.

Statistical measures: Mean, median, mode, variance, population parameters
vs. sample statistics etc.

Proximity and error metrics: Cosine similarity, mean-squared error, Manhat-
tan and Euclidean distance, log-loss, etc.

Distributions and random sampling: Uniform, normal, binomial, Poisson, etc.

Analysis methods: ANOVA, hypothesis testing, factor analysis, etc.

e Data Modeling and Evaluation

Data preprocessing: Munging/wrangling, transforming, aggregating, etc.
Pattern recognition: Correlations, clusters, trends, outliers & anomalies, etc.
Dimensionality reduction: Eigenvectors, Principal Component Analysis, etc.

Prediction: classification, regression, sequence prediction, suitable error/ac-
curacy metrics.

Evaluation: Training-testing split, sequential vs. randomized cross-validation,
ete.

¢ Applying Machine Learning Algorithms and Libraries

Models: Parametric vs. non-parametric, decision tree, nearest neighbor, neu-
ral net, support vector machine, ensemble of multiple models, etc.

169

https://eu.udacity.com/course/machine-learning-interview-prep--ud1001

7 Interviews

— Learning procedure: Linear regression, gradient descent, genetic algorithms,
bagging, boosting, and other model-specific methods; regularization, hyper-
parameter tuning, etc.

— Trade-offs and gotchas: Relative advantages and disadvantages, bias and
variance, overfitting and underfitting, vanishing/exploding gradients, miss-
ing data, data leakage, etc.

o Software Engineering and System Design

— Software interface: Library calls, REST APIs, data collection endpoints,
database queries, etc.

— User interface: Capturing user inputs & application events, displaying results
& visualization, etc.

— Scalability: Map-reduce, distributed processing, etc.

— Deployment: Cloud hosting, containers & instances, microservices, etc.

170

8 Linux/Unix

The UNIX operating system requires that every IO device driver provide five standard
functions: open, close, read, write, and seek. The signatures of those functions must be
identical for every IO driver.

8.1 General Tools and Packages
o Compilers: cc, gee, ¢89, as, gas
e Debugging: dbx, debug, dgb
e Libraries: ar, 1d, nm, objdump
e Linkers: 1d, 1dd
e Optimizations: prof, gprof

e Projects
— make (recommended content and order: all, install, clean, doc, depend),
— RCS - an archive of file versions
x free, enterprise is SCCS
x CVS - RCS for big projects

171

8 Linux/Unix

8.2 Helper tools for smaller scripting
awk
basename
cat

cxref

cut

date
dmesg
exec

eval

find

flock
grep
getent
getopts
chmod
chown
gunzip
kill

less
Isb_release (and /etc/Isb-release)
Ishw
mktemp
mv
parallel

passwd

172

8 Linux/Unix

pidof
popd
pgrep
pushd
ps
readonly
rm
rsync
scp

sed

shift
shred!
size

sort
source (vs bash script.sh vs ./script.sh)
sha256sum
ssh

strip

su

tail

tar

top
timeout
tr

type
uniq

wait

173

wc
wget
which
who

zcat

zip

8 Linux/Unix

174

8 Linux/Unix

8.3 Networking

o Iptables:

$ iptables -A INPUT -p tcp --dport 22 -j ACCEPT
$ iptables -L

o Netstat:

’$ netstat -tulpn | less

e Mounting remote directory of server X:

’$ sshfs X:/path/dir .

e« SSH:

$ /sbin/service sshd status

$ sudo systemctl start sshd.service

e ping

175

8 Linux/Unix

8.4 Services and Processes

e Command service:

$ service sshd status

$ service sshd start

e Command initctl:

$ initctl restart X

$ initctl status X

e Command journalctl:

’$ journalctl # system journal showing cronjobs etc. ‘

e List of cronjobs:

’ $ cronjob -1 ‘

o Kill all stopped processes:

|$ kill -9 $(jobs -p) |

e Command nohup - executing commands after we left shell prompt. It’s possible
to do prioritization, check logs, etc.?.

— nohup vs & at the end - “€” sends SIGHUP and will kill a process, but nohup
will ignore this signal and process will run even after a user’s logout.

2http://www.cyberciti.biz/tips/nohup-execute-commands-after-you-exit-from-a-shell-
prompt.html

176

http://www.cyberciti.biz/tips/nohup-execute-commands-after-you-exit-from-a-shell-prompt.html
http://www.cyberciti.biz/tips/nohup-execute-commands-after-you-exit-from-a-shell-prompt.html

8 Linux/Unix

8.5 Bash
e You can write unit-tests for Bash with BATS3.

o Update of all the packages you have installed:

$ pip3 freeze | cut -d "=" -f 1 > requirements.txt

$ sudo pip3 install --upgrade -r requirements.txt

e declare, local, global, export

3https://github.com/sstephenson/bats

177

https://github.com/sstephenson/bats

9 Mastering Git

There are many tools that offer code collaboration and version control using Git, such

as:

9.1

Gitlab
GitHub
Gitolite
Bitbucket

Basics & General

Delete the last pushed commit:

$ git reset --hard HEAD~1

$ git push origin HEAD --force

Commands git remote prune and git fetch --prune do the same thing: delete the
refs to branches that don’t exist on the remote.! This is highly desirable when
working in a team workflow in which remote branches are deleted after merge to
master. The second command, git fetch --prune will connect to the remote and
fetch the latest remote state before pruning. It is essentially a combination of
commands:

$ git fetch —-all && git remote prune

The generic git prune command deletes locally detached commits. It basically
cleans up unreachable or "orphaned" Git objects. Unreachable objects are those
that are inaccessible by any refs. Any commit that cannot be accessed through a
branch or tag is considered unreachable.

There is a fast cloning possibility for saving time and disk space. It copies only
recent revisions. Git’s shallow clone option allows you to pull down only the latest
n commits of the repository’s history: git clone --depth [depth] [remote-url]

For more options how to deal with repositories that have big files, or very long
commit commit history, read the following tutorial: https://www.atlassian.
com/git/tutorials/big-repositories

Lurlhttps:/ /www.atlassian.com/git /tutorials /git-prune

178

https://www.atlassian.com/git/tutorials/big-repositories
https://www.atlassian.com/git/tutorials/big-repositories

9 Mastering Git

e Delete untracked files in the local working directory, but only with dry run where
nothing is actually deleted: git clean -n

« Relative Referencing?

Sometimes it’s useful to be able to indicate a revision relative to a known
position, like HEAD or a branch name. Git provides two operators that,
while similar, behave slightly differently.

The first of these is the tilde (~) operator. Git uses tilde to point to a parent of
a commit, so HEA D~ indicates the revision before the last one committed. To
move back further, you use a number after the tilde: HEA D~8 takes you back
three levels. This works great until we run into merges. Merge commits have
two parents, so the ~ just selects the first one. While that works sometimes,
there are times when you want to specify the second or later parent. That’s
why Git has the caret (7) operator.

The ~ operator moves to a specific parent of the specified revision. You use a
number to indicate which parent. So HEAD 2 tells Git to select the second
parent of the last one committed, not the “grandparent.” It can be repeated
to move back further: HEAD 27 takes you back three levels, selecting the
second parent on the first step.

These two operators can be combined together.

e« Revision Ranges

The “double dot” method for specifying ranges looks like it sounds: git log
b05022238cdf08..60f89368787f0e

Triple dot notation uses 3 dots between the revision specifiers. This works in
a similar manner to the double dot notation except that it shows all commits
that are in either revision that are not included in both revisions.

e« Handling Interruptions

e Ref

Here, git stash and git stash pop are your friends. Along with some others
such as git list, git stash apply, git stash show -p stash@{N}, git stash drop
and git stash pop. They are all very simple commands.

A ref is an indirect way of referring to a commit. You can think of it as a
user-friendly alias for a commit hash. This is Git’s internal mechanism of
representing branches and tags.

Refs are stored as normal text files in the .git/refs directory.

To change the location of the master branch, all Git has to do is change the
contents of the refs/heads/master file. Similarly, creating a new branch is
simply a matter of writing a commit hash to a new file.

2ht'cps ://realpython.com/advanced-git-for-pythonistas/

179

https://realpython.com/advanced-git-for-pythonistas/

9 Mastering Git

When passing a ref to a Git command, you can either define the full name
of the ref, or use a short name and let Git search for a matching ref. So git
show some-feature is equal to git show refs/heads/some-feature.

e Refspec

It maps a branch in the local repository to a branch in a remote repository.
This makes it possible to manage remote branches using local Git commands
and to configure some advanced git push and git fetch behavior.

A refspec is specified as [+]<src>:<dst>. The <src> parameter is the source
branch in the local repository, and the <dst> parameter is the destination
branch in the remote repository. The optional + sign is for forcing the remote
repository to perform a non-fast-forward update.

Refspecs can be used with the git push command to give a different name to
the remote branch.

For example, the following command pushes the master branch to the origin
remote repo like an ordinary git push, but it uses ga-master as the name for
the branch in the origin repo. This is useful for QA teams that need to push
their own branches to a remote repo:

git push origin master:refs/heads/qa-master

 Reflog

e Git

The reflog is Git’s safety net. It records almost every change you make in
your repository, regardless of whether you committed a snapshot or not. You
can think of it as a chronological history of everything you’ve done in your
local repo.

So it shows a log of changes to the local repository’s HEAD. Good for finding
lost work.3

To view the reflog, run the git reflog command.

If you want to recover the last change before the last commit from reflog,
you can do it with git checkout HEAD@{1} command. See a practical ex-
ample with much verbose explanation here: https://www.atlassian.com/
git/tutorials/refs-and-the-reflog

Log*

Formatting log output

* Seeing all tags, branches, etc in high-level overview: git log --oneline
--decorate

3https://towardsdatascience.com/10-git-commands-you-should-know-df54beal595¢c
“https://www.atlassian.com/git/tutorials/git-log

180

https://www.atlassian.com/git/tutorials/refs-and-the-reflog
https://www.atlassian.com/git/tutorials/refs-and-the-reflog
https://towardsdatascience.com/10-git-commands-you-should-know-df54bea1595c
https://www.atlassian.com/git/tutorials/git-log

9 Mastering Git

* The --stat option displays the number of insertions and deletions to each
file altered by each commit. Or, for actual changes, pass -p parameter
instead.

x Command git shortlog is intended for creating release announcements. It
groups each commit by author and displays the first line of each commit
message. This is an easy way to see who’s been working on what. By
default, git shortlog sorts the output by author name, but you can also
pass the -n option to sort by the number of commits per author.

x The --graph option draws an ASCII graph representing the branch struc-
ture of the commit history. This is commonly used in conjunction with
the --oneline and --decorate commands to make it easier to see which
commit belongs to which branch. While this is a nice option for simple
repositories, you're probably better off with a more full-featured visual-
ization tool such as gitk or Sourcetree.

* Or you can use custom formatting, with --pretty=format:"<string>" op-
tion.

— Filtering the commit history
+* By amount, with parameter -n <N>
x By date, with parameter for example:
--after="2014-7-1"
--after="yesterday"

--after="2014-7-1" --before="2014-7-4" for outputting all commits in
between 2 dates

--since and --until flags are synonymous with --after and --before,
respectively

* By author, wth --author="John" parameter. You can also use regular
expressions here.

* By commit message, with --grep="pattern" parameter (you can use -7 to
ignore case differences while pattern matching). This parameter works
as the previous one.

x By files, with -- <filel> <file2> parameter.

* Filtering out displaying merge commits can be achieved by passing the
--no-merges option.

« Git Blame

— Command git blame <file> is like annotation in PyCharm. You can see who
changed what and when in a given file. It can be quite useful.

¢ Git Patch

181

9 Mastering Git

— The first time a file is committed to a project in GIT, a copy is stored. For
all commits after that, GIT essentially stores instructions telling it how to
transform the previous version of the project to the newly committed version
(these are diffs).”

— Whenever you checkout a branch, GIT will basically start at the original state
of the project, and apply all of these diffs in order, to to get to the desired
state.

— For creating a patch from some commit to another commit, we will use the
following: git diff <from-commit> <to-commit> > patch.diff

— After patch file has been created, applying it is easy. Make sure that the
branch you have checked out is the one that you want to apply the patch to.
Then you can apply the patch using git apply patch.diff command.

— Warning: Although applying a patch in this way will exactly replicate con-
tent, no commit history will be replicated. This means that even if the patch
you create spans several commits, it will appear as a single set of changes
when applied. You will lose both the knowledge of how the commits were
broken up and also the messages for each commit. Applying the patch did
not commit the changes, nor did it bring any of the commit history associated
with these changes with it.

e Git Merge-base

— The command git merge-base <master> <feature> will determine the most
recent common commit between 2 branches, in this case between master and
feature branch.

Shttps://www.thegeekstuff.com/2014/03/git-patch-create-and-apply/

182

https://www.thegeekstuff.com/2014/03/git-patch-create-and-apply/

9 Mastering Git

9.2 Commit message

e A team’s approach to its commit log should be no different. In order to create a
useful revision history, teams should first agree on a commit message convention
that defines at least the following three things:

— Style. Markup syntax, wrap margins, grammar, capitalization, punctuation.
Spell these things out, remove the guesswork, and make it all as simple as
possible. The end result will be a remarkably consistent log that’s not only a
pleasure to read but that actually does get read on a regular basis.

— Content. What kind of information should the body of the commit message
(if any) contain? What should it not contain?

— Metadata. How should issue tracking IDs, pull request numbers, etc. be
referenced?
e The seven rules of a great Git commit message
1. Separate subject from body with a blank line

2. Limit the subject line to 50 characters. If you're having a hard time summa-
rizing, you might be committing too many changes at once.

w

. Capitalize the subject line

W

. Do not end the subject line with a period

t

. Use the imperative mood in the subject line. Spoken or written as if giving
a command or instruction. Use of the imperative is important only in the
subject line. You can relax this restriction when you’re writing the body.

. Wrap the body at 72 characters

(=)

7. Use the body to explain what and why vs. how. How is not important, code
is self-explanatory (if there is very sophisticated change, use code documen-
tation).

183

9 Mastering Git

9.3 Submodules

Clone and Init

$ git clone git@git_ hostname:submoduleX

$ git submodule init -- update

Pull all submodules from master branch

$ git submodule foreach git pull origin master

How to delete a submodule

e remove entry from .gitmodule
o remove entry from .git/config (not necessarily)

» remove path created for a given submodule (but be careful here, there cannot be
’/” n the end of the path)

’$ git rm --cached [path/module]

Discard changes in submodule

If something went wrong, we can discard changes in submodule and initialize it again.
We just have to go to a given directory, and type:

$ git submodule deinit -f .

$ git submodule update --init

Adding a submodule

$ git submodule add lsulak@git__hostname:repo libs/repo

184

9 Mastering Git

9.4 Rebasing

e The aim of rebasing and merging is the same, but both commands are doing things
differently. And also history of commits will look differently using one command
or another. With rebasing, you may have a perfectly linear project history.5

e Let’s have an example of incorporating changes from master branch to my lo-
cal feature branch (so master branch was changed since we checkout the feature
branch). This will put the feature branch on the top of master (so we are rebasing
feature branch onto master branch), but for each commit from the original feature
branch there will be a change - project history is re-written by creating branch new
commits for each original commit in feature branch (alternative is merging with
command git merge feature master, but that creates a new merge commit in the
feature branch, and that is ugly and it master branch is very active, it can pollute
your feature branch a lot; but it is easy and non-destructive):

$ git checkout feature

$ git rebase master

e Rebasing loses the context provided by a merge commit - you can’t see when
upstream changes were incorporated into the feature (but that is probably not
needed in most scenarios).

o Do not use rebasing on public branches (=use rebasing only on your branches).
From the previous example, rebasing master onto feature - that is bad! The rebase
moves all of the commits in master onto the top of feature. The problem is that
this only happened in your repository. All of the other developers are still working
with the original master. Since rebasing results in brand new commits, Git will
think that your master branch’s history has diverged from everybody else’s. The
only way to synchronize the 2 master branches is to merge them back together,
resulting in an extra merge commit and 2 sets of commits that contain the same
changes = ugly and confusing.

e So before you use rebasing, ask yourself: “Is anyone else looking at this
branch?” If the answer is yes, use a different approach instead of rebasing. But if
you and some other person are developing code in a single feature branch, and you
want to incorporate his changes into yours, you can still do it - because you will
not change or move his commits, only yours (its like “add my changes to what he
has already done”).

o It is possible to push changes after rebasing with parameter —force (but be careful
here). One of the only times you should be force-pushing is when you’ve performed

®https://www.atlassian.com/git/tutorials/merging-vs-rebasing

185

https://www.atlassian.com/git/tutorials/merging-vs-rebasing

9 Mastering Git

a local cleanup after you’'ve pushed a private feature branch to a remote repository
(e.g., for backup purposes). This is like saying, “Oops, I didn’t really want to push
that original version of the feature branch. Take the current one instead.” Again,
it’s important that nobody is working off of the commits from the original version
of the feature branch.

e It is a good idea to clean up your code with an interactive rebase before submitting
your PR or MR (because after the submitting, the branch is public and you would
re-write the commit history...but this is violated by lot of people).

e Once all is ready, you can just merge feature branch into master. By performing
a rebase before the merge, you're assured that the merge will be fast-forwarded,
resulting in a perfectly linear history - because there will be no conflicts or new
changes from master.

Interactive rebasing

o Simple flow with local feature branch:

$ git rebase —-interactive [HEAD~7 or other_branch name]

<some changes>

$ git rebase --continue

$ git push origin branch --force

e There are several options in interactive rebase:
— squash - combination of multiple commits
— pick - commit choose/reorder
— fixup - merge commit with one above and commit message is discarded
— edit - commit edit/split

— reword - fix commit message only

o If something went wrong, you can abort rebasing, or you can use command git
reflog.

’$ git rebase --abort ‘

e Further changes = new commits, and then combination with staged changes with
the previous commit (git rebase —continue is for to moving branch HEAD back to
the commit we originally had, while also including the new changes we added):

$ git commit --amend

$ git rebase --continue

186

9 Mastering Git

o If we want to add some new changes to the previous commit, we can use command
git amend. So it will add your staged changes to the most recent commit. If
nothing is staged, this command just allows you to edit the most recent commit
message. Only use this command if the commit has not been integrated into the
remote master branch! So first we will perform some changes, then we will put the
changes into staging area, and do the following:

$ git commit --amend

$ git push —force-with-lease <remote> <branch>

187

9 Mastering Git

0.5 Feature Branch

Merging of a feature branch:

$ git checkout some-feature git pull origin devel
$ git checkout devel git merge --no-ff --log some-feature

$ git push origin devel

$ git branch -d some-feature git push origin --delete some-feature

188

9 Mastering Git

0.6 Reset

Resetting changes back (only those that weren’t already pushed). So this is for local
branch. It is possible to work with individual files. This is a permanent undo. For
example, changing a branch to another commit, for example 2 commits back:

$ git checkout hotfix

$ git reset HEAD~2

e --soft - staged area a working directory are not affected

e --mixed - default choice, staged area will be changed according to commit, but not
working directory

o --reset - all is based on a given commit

These 3 parameters do not work with an individual file.

Examples

o Reset staged area:

’$ git reset --mixed HEAD ‘

e Discard staged and unstaged changes since the most recent commit:

’ $ git reset --hard HEAD ‘

o Unstage file foo.py, but changes will be still present in the working directory:

’$ git reset HEAD foo.py ‘

e Discard commits in a private branch or throw away uncommited changes:

’$ git reset <Commit-level> ‘

189

9 Mastering Git

9.7 Checkout

A checkout is an operation that moves the HEAD ref pointer to a specified commit. It
is possible to work with an individual file, commit, or a branch.

Examples

e Switch between branches or inspect old snapshots:

’$ git checkout <Commit-level>

e Discard changes in the working directory:

’$ git checkout <File-level>

190

9 Mastering Git

0.8 Revert

e A revert is an operation that takes a specified commit and creates a new commit
which inverses the specified commit. git revert can only be run at a commit level
scope and has no file level functionality. Revert is considered a safe operation
for “public undos” as it creates new history which can be shared remotely and
doesn’t overwrite history remote team members may be dependent on. So it is
safe operation for already pushed commits.

e Contrast this with git reset, which does alter the existing commit history. For this
reason, git revert should be used to undo changes on a public branch, and git reset
should be reserved for undoing changes on a private branch.

e You can also think of git revert as a tool for undoing committed changes, while git
reset HEAD is for undoing uncommitted changes.

Examples

e Undo commits in a public branch:

’$ git revert <Commit-level> ‘

e reverting a newly created commit:

’$ git revert HEAD ‘

e Find a branch which is currently on HEAD:

’$ git symbolic-ref --short HEAD ‘

191

9 Mastering Git

9.9 Tags

Examples

o Update:

$ git fetch --tags

e New tag:

n

$ git tag -a v1.4 -m "comment

$ git push --tags

e Remove tag on some remote branch:

’$ git push origin :refs/tags/<tagname>

e Replace tag on the last commit:

’$ git tag -fa <tagname>

e Push tag onto a remote origin:

’ $ git push origin master --tags

192

9 Mastering Git

0.10 Git Hooks

¢ Git hooks are scripts that run automatically every time a particular event occurs
in a Git repository. They let you customize Git’s internal behavior and trigger
customizable actions at key points in the development life cycle.”

e Common use cases for Git hooks include encouraging a commit policy, altering the
project environment depending on the state of the repository, and implementing
continuous integration workflows. But, since scripts are infinitely customizable,
you can use Git hooks to automate or optimize virtually any aspect of your devel-
opment workflow.

o All Git hooks are ordinary scripts that Git executes when certain events occur in
the repository. They are placed in .git/hooks directory of every Git repository.

o All of the pre-hooks let you alter the action that’s about to take place, while the
post-hooks are used only for notifications.

Local Hooks

Local hooks affect only the repository in which they reside. As you read through this
section, remember that each developer can alter their own local hooks, so you can’t use
them as a way to enforce a commit policy.

e For entire commit life cycle:

— pre-commit - this one is executed every time you run git commit before Git
asks the developer for a commit message or generates a commit object.

— prepare-commit-msg - this is called after the pre-commit hook to populate
the text editor with a commit message. This is a good place to alter the
automatically generated commit messages for squashed or merged commits.

— commit-msg - this hook is much like the previous one, but it’s called after the
user enters a commit message. This is an appropriate place to warn developers
that their message doesn’t adhere to your team’s standards.

— post-commit - this one is called immediately after the previous hook. It can’t
change the outcome of the git commit operation, so it’s used primarily for
notification purposes.

o Some other extra actions or safety checks

— post-checkout - this hook works a lot like the post-commit hook, but it’s called
whenever you successfully check out a reference with git checkout. This is nice
for clearing out your working directory of generated files that would otherwise
cause confusion.

"https://www.atlassian.com/git/tutorials/git-hooks

193

https://www.atlassian.com/git/tutorials/git-hooks

9 Mastering Git

— pre-rebase - this one is called before git rebase changes anything, making it a
good place to make sure something terrible isn’t about to happen.

Server-side

These reside in server-side repositories (e.g., a central repository, or a developer’s public
repository). When attached to the official repository, some of these can serve as a way to
enforce policy by rejecting certain commits. All of these hooks let you react to different
stages of the git push process.

e pre-receive - this is executed immediately after git push, so it is possible to reject
changes.

o update - this hook is called after the previous one. It’s still called before anything
is actually updated, but it’s called separately for each ref that was pushed.

e post-receitve - this is called after a successful push operation, making it a good
place to perform notifications. For many workflows, this is a better place to trigger
notifications than post-commit because the changes are available on a public server
instead of residing only on the user’s local machine. Emailing other developers and
triggering a continuous integration system are common use cases for post-receive.

194

9 Mastering Git

9.11 Cherry Pick

This command enables arbitrary Git commits to be picked by reference and ap-
pended to the current working HEAD.

Cherry picking is the act of picking a commit from a branch and applying it to
another. git cherry-pick can be useful for undoing changes.

For example, say a commit is accidentally made to the wrong branch. You can
switch to the correct branch and cherry-pick the commit to where it should belong.

Cherry picking can cause duplicate commits and many scenarios where cherry
picking would work, traditional merges are preferred instead. With that said git
cherry-pick is a handy tool for a few scenarios.

The most common use case is probably bug fix: a developer creates an explicit
commit patching that bug. This new patch commit can be cherry-picked directly
to the master branch to fix the bug before it effects more users.

Let’s say, that we want to use commit A in master branch. So we will checkout
master branch, and then use command git cherry-pick A, where, of course, A is an
SHA of a given commit.®

Cherry picking is another method for moving commits from one branch to an-
other. Unlike merging and rebasing, with cherry-picking you specify exactly which
commits you mean. The easiest way to do this is just specifying a single SHA:°

git cherry-pick 4a4f4492ded256aa7629bf5176a17f9edab6efbb

This tells Git to take the changes that went into 4a4f449 and apply them to the
current branch. This feature can be very handy when you want a specific change
but not the entire branch that change was made on.

8https://www.atlassian.com/git/tutorials/cherry-pick
“https://realpython.com/python-git-github-intro/

195

https://www.atlassian.com/git/tutorials/cherry-pick
https://realpython.com/python-git-github-intro/

9 Mastering Git

9.12 GitLab

Examples

e https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/

e Create own branch and start working on feature:

$ git checkout devel

$ git pull

$ git checkout -b feature/1234_my_ cool_feature

e If you are ready for review, open a merge request. Please create a merge request
against devel branch as target in original repository.

o Updating merge request, using force push:

$ touch new file.txt
$ git add new_ file.txt

$ git commit -m 'new file’

$ git push --force

Pro tip: You can amend existing commits instead of adding news at the end by
interactive rebase (git rebase -i master 1234 branch)

e On merge request conflicts:

$ git checkout devel
$ git pull

$ git rebase devel 1234 branch <resolve conflicts>

$ git push --force

196

https://about.gitlab.com/2016/10/25/gitlab-workflow-an-overview/

9 Mastering Git

9.13 Git branching workflows

Inspired or taken from https://medium.com/@patrickporto/4-branching-workflows—
for-git-30d0aaee7bf and https://www.atlassian.com/git/tutorials/comparing-
workflows.

GitFlow

o This flow is based on 2 main branches

— master - production code, all development code is merged into master after
some time.

— develop - pre-production code, where all finished features are merged here.

o Also, during development cycle, a variety of supporting branches are used:

— feature-* - new features for upcoming releases. May branch off from de-
velop and must be merged into develop.

— hotfix-* - necessary to act upon an undesired status of master. May branch
off from master and must be merged into master and develop.

— release-* - these branches support preparation of a new production release.
They allow many minor bugs to be fixed and also preparing metadata for a
release. May be branch off from develop and must be merged into master
and develop.

o This is also known as “A successful Git branching model”, from 2010. It was one of
the first proposals to use git branches and it has gotten a lot of attention. However,
it has few problems:!?

— Developers must use the develop branch and not master, master is reserved
for code that is released to production. It is a convention to call your default
branch master and to mostly branch from and merge to this. Since most tools
automatically make the master branch the default one and display that one
by default it is annoying to have to switch to another one.

— The complexity introduced by the hotfix and release branches is another prob-
lem. These branches can be a good idea for some organizations but are overkill
for the vast majority of them. Nowadays most organizations practice contin-
uous delivery which means that your default branch can be deployed. This
means that hotfix and release branches can be prevented including all the cer-
emony they introduce. An example of this ceremony is the merging back of
release branches. Though specialized tools do exist to solve this, they require
documentation and add complexity. Frequently developers make a mistake
and for example changes are only merged into master and not into the develop
branch. The root cause of these errors is that git flow is too complex for most

https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/

197

https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
https://medium.com/@patrickporto/4-branching-workflows-for-git-30d0aaee7bf
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/

9 Mastering Git

of the use cases. And doing releases doesn’t automatically mean also doing
hotfixes.

— Using individual (long lived) branches for features also make it harder to en-
sure that everything works together when changes are merged back together.
This is especially pronounced in today’s world where continuous integration
should be the default practice of software development regardless how big the
project is. By integrating all changes together regularly you’ll avoid big inte-
gration issues that waste a lot of time to resolve, especially for bigger projects
with hundreds or thousands of developers.

o A lot simpler is GitHub flow or GitLab flow. Or the cactus model!! (this is much
more simple and makes sure that continuous integration principles are used).
e Pros
— Clean state of branches at any given moment in lifecycle of project.
— It has many extensions and support on most used git tools.'?

— Ideal when there are multiple versions of production.

o Cons
— Git history becomes unreadable.!?

— Master/develop split is considered redundant and makes CD and CI harder.
It is very complex and over-engineered.

— It isn’t recommended when it is needed to maintain a single version
of production.

"https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/
2https://github.com/nvie/gitflow
Bhttps://www.endoflineblog.com/gitflow-considered-harmful

198

https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/
https://github.com/nvie/gitflow
https://www.endoflineblog.com/gitflow-considered-harmful

9 Mastering Git

release
branches hotfixes master

feature
branches develop

Major
feature for
next rebease

From this paint an,
"l releate”
mizans the rebease

O«
I;EI

Z

Figure 9.1: Git flow diagram.

GitHub Flow

o Suppose you have a staging environment (master), a pre-production environment
(MR from the master branch to pre-production branch) and a production

199

9 Mastering Git

environment (merging pre-production into production).

e GitHub flow does assume you are able to deploy to production every time you
merge a feature branch. There are many cases where this is not possible.

e This is a lightweight workflow created by GitHub in 2011 and it respects the
following principles:

1. Anything in master branch is deployable.
2. If you are working on something new, create a branch off from master and
give a proper descriptive name.
3. Commit to that new branch locally and regularly push your work to the same
named remote branch on the server.
4. When you need a feedback or help, or all changes are ready for merging, open
a PR (pull request).
5. After someone else has reviewed and signed off on the feature, YOU
can merge it into master.
6. Once it is merged and pushed into master, you can and should deploy im-
mediately.
e Pros
— Friendly for CD and CI.
— A simpler alternative to Git Flow.
— Ideal when it needs to maintain a single version in production.
e Cons

Production code can become unstable most easily.
Not adequate when it is needed to have release plans.

It doesn’t resolve anything about deployment, environment, releases, and
issues.

Not recommended when multiple versions in production are needed.

200

9 Mastering Git

MASTER

ADD-NAVIGATION .
. FEATURE-X

Figure 9.2: GitHub flow diagram.

GitLab Flow

Combination of feature-driven development and feature branches with issue track-
ing.

Created by GitLab in 2014.'4

There can be a project that isn’t able to deploy to production every
time you merge a feature branch - in that case, GitHub Flow is not a way,
GitLab is!

BTW, merge or pull requests are created in a git management application and ask
an assigned person to merge two branches. Tools such as GitHub and Bitbucket
choose the name pull request since the first manual action would be to pull the
feature branch. Tools such as GitLab and others choose the name merge request
since that is the final action that is requested of the assignee. In this article we’ll
refer to them as merge requests.

Merge requests always create a merge commit even when the commit could be
added without one. This merge strategy is called “no fast-forward” in git. Git
history is not linear, but the advantage is that reverting the entire feature requires
reverting only 1 commit (the merge commit).

Yhttps://about.gitlab.com/2014/09/29/gitlab-flow/?fbclid=IwAR3qj0-
ftt0zRLytF61n6PheiGYEQwwZji3MHgU-i0tPjBbNOC1TGpjAh3I

201

https://about.gitlab.com/2014/09/29/gitlab-flow/?fbclid=IwAR3qjO-fttOzRLytF6ln6PheiGYE9wwZji3MHgU-iOtPjBbNOC1TGpjAh3I
https://about.gitlab.com/2014/09/29/gitlab-flow/?fbclid=IwAR3qjO-fttOzRLytF6ln6PheiGYE9wwZji3MHgU-iOtPjBbNOC1TGpjAh3I

9 Mastering Git

o It respects the following principles:'®

1.
2.
3.

Use feature branches, no direct commits on master.
Test all commits, not only ones on master.

Run all the tests on all commits (you may have them in parallel if they
are running longer than 5min).

Perform code reviews before merging into master.

5. Deployments are automatic, based on branches or tags.

. Tags are set by the user, not by CI. A user sets a tag and, based on that, the

CI will perform an action. You shouldn’t have the CI change the repository.

Releases are based on tags. If you tag something, that creates a new release.

8. Pushed commits are never rebased. If you push to a public branch you

10.

11.

shouldn’t rebase it since that makes it hard to follow what you're improv-
ing, what the test results were, and it breaks cherry-picking. Code should be
clean, history should be realistic

Everyone starts from master, and targets master. You don’t have any
long branches. You check out master, build your feature, create your merge
request, and target master again. You should do your complete review before
you merge, and not have any intermediate stages.

Fix bugs in master first and release branches afterwards. Fix it in master,
then cherry-pick it into another patch-release branch. If you find a bug, the
worst thing you can do is fix it in the just-released version, and not fix it in
master.

Commit messages reflect intent. You should not only say what you did, but
also why you did it. It’s even more useful if you explain why you did this over
any other options.

e Pros
— It defines how to make CI and CD.

— Git history will be cleaner, less messy and more readable.

— Ideal when it is needed to have a single version in production.

e Cons

— More complex than GitHub Flow.

— If multiple versions of production are needed, this flow can become very com-

plex.

https://about.gitlab.com/2016/07/27/the-11-rules-of-gitlab-flow/

202

https://about.gitlab.com/2016/07/27/the-11-rules-of-gitlab-flow/

9 Mastering Git

MASTER PRE-PRODUCTION PRODUCTION

*0
® O .
X o

Figure 9.3: Environment branches with GitLab flow

203

9 Mastering Git

MASTER

O
2-3-STABLE
O
O

@'@9}:‘%{

Figure 9.4: Release branches with GitLab flow. Only in case you need to release software
to the outside world you need to work with release branches. After a release
branch is announced, only serious bug fixes are included in the release branch.
If possible these bug fixes are first merged into master and then cherry-picked
into the release branch. This way you can’t forget to cherry-pick them into
master and encounter the same bug on subsequent releases. This is called an
‘upstream first’ policy that is also practiced by Google and Red Hat. Every
time a bug-fix is included in a release branch the patch version is raised (to
comply with Semantic Versioning) by setting a new tag. In this flow it is not
common to have a production branch.

OneFlow

o You have only one eternal branch in your repository (for example master). And
then you have feature/hotfix branches, and release branches (all these are being

204

9 Mastering Git

removed after their usage and integration into master)!©.

o The only condition that needs to be satisfied is that every new production release is
based on the previous release. The most difference between OneFlow and GitFlow
(above) is, that there is no develop branch. Actually, OneFlow was meant to
be a replacement for GitFlow.

e Pros
— Clean and more readable git history.
— Flexible according to team decisions.

— Ideal when it is needed to have a single version in production.

e Cons

— f your project has a high degree of automation - uses Continuous Delivery,
or even Continuous Deployment, for example, then this workflow will most
likely be too heavy for you. Perhaps parts of it might still be useful, but
other elements (like the release process, for instance) would have to be heavily
modified to make sense when releasing on such a very frequent cadence.

— Not recommended when it needs to maintain a multiple incompat-
ible release versions (such as Python2 and Python 3 versions of a project).

16https ://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

205

https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow

10 Software Licences [SK]

10.1 General

Pri tejto knihe som pouzival zdroje!?3.
V US ak licencia nie je specifikovana, uzivatelia nemozu stahovat, modifikovat a ani
distribuovat.

10.2 MIT Licence

Je jednoducha a zhovievava, mozeme robit co chceme pokial tam vlozime povodny copy-
right a licenciu.

e Povolenia: komercne pouzitie, distribucia, modifikacia, privatne pouzitie, sublicen-
cia.

¢ Podmienky: include licenciu a copyright.

e Limitacie: zodpovednost.

10.3 Apache Licence, v2.0

Rovnake ako MIT + uzivatelom sa poskytuje patentove pravo expresne.

e Povolenia: komerne pouzitie, distribucia, modifikacia, pouzitie patentu a pre pri-
vatne pouzitie, sublicencia a zaruka.

e Podmienky: include licenciu, copyright a zmeny stavu. Ak sa nachadza NOTICE
subor, tak ho musime tiez vlozit. Mozeme donho pisat (append).

o Limitacie: pouzitie trademarku (ochrannej znamky - nemusime pouzit meno povod-
nych autorov pre schvalenie derivovaneho produktu) a zodpovednost.

Licencie - http://choosealicense.com/
20OpenSource licencie - https://opensource.org/licenses
3Short versions - https://tldrlegal.com

206

http://choosealicense.com/
https://opensource.org/licenses
https://tldrlegal.com

10 Software Licences [SK]

10.4 GNU AGPLv3

Affero General Public License.

e Povolenia: komerne pouzitie, distribucia, modifikacia, pouzitie patentu a pre pri-
vatne pouzitie.

e Podmienky: zdrojak musi byt dostupny pri jeho distribuovani, include licenciu a
copyright, sietove pouzitie a distribucia, rovnaka licencia (pri modifikacii a nasled-
nom release), zmeny stavu (indikovat zmeny v kode).

o Limitacie: zodpovednost (SW je poskytovany bez zaruky a autor/licence owner
nenesie ziadnu zodpovednost za pripadne skody).

10.5 GNU GPLv3 a LGLPv3

General a Lesses General Public License. Je to rovnake ako Apache, plus uzivatel, co si
SW skopiruje/pouziva musi dodrzovat rovnake podmienky ako su momentalne dane.

e Rovnake povolenia, podmienky aj obmedzenia. Od predchadzajuceho sa lisi v tom,
ze nie je potrebna podmienka sietoveho pouzitia a distribucie.

10.6 Mozilla Public License 2.0

e Povolenia: Komerne pouzitie, distribucia, modifikacia, pouzitie patentu a pre pri-
vatne pouzitie, zaruka, sublicencia (schopnost udelit/rozsirit licenciu k SW).

e Podmienky: include licenciu a copyright, rovnaka licencia, zdrojak musi byt dos-
tupny pri jeho distribuovani.

o Limitacie: pouzitie trademarku (ochrannej znamky) a zodpovednost.

10.7 The Unlicense

Licencia bez akychkolvek podmienok.

e Povolenia: Komerne pouzitie, distribucia, modifikacia, pouzitie patentu a pre pri-
vatne pouzitie.

e Podmienky: None.

e Limitacie: zodpovednost.

207

10 Software Licences [SK]

10.8 Zlib-Libpng License (Zlib)

Casto pre open source balicky a zlib kniznicu. Velmi kratka a zhovievava. Modifikovanu
verziu SW je treba premenovat.

e Povolenia: Komerne pouzitie, distribucia a modifikacia.

o Podmienky: include copyright, premenovanie (zmenenu verziu je nutne premenovat
aby jej nazov nekolidoval s povodnou verziou).

e Limitacie: zodpovednost.

10.9 BSD 2-Clause License (FreeBSD/Simplified)

Skoro bezlimitna volnost, no je nutne skopirovat BSD copyright.
e Povolenia: Komercne pouzitie, distribucia, modifikacia, zaruka.
e Podmienky: include licenciu a copyright.

e Limitacie: zodpovednost

10.10 BSD 3-Clause License (Revised)

Ako predchadzajuca, ale dalsia limitacia - pouzitie trademarku.

10.11 EULA

Asi nie konkretna licencia, vacsinou pre krabicovy SW, je to licencna zmluva koncoveho
uzivatela. Zobrazuje, ako moze a nemoze byt SW pouzity. Ma tiez nejake obmedzenia,
ako napriklad zdielanie SW s niekym inym.

208

11 JetBrains IDE (PyCharm) [SK]

11.1 Keyboard Shortcuts

CTRL+N - najdenie a otvorenie nejakej triedy
CTRL+SPACE - autocomplete

ALT+SHIFT4T7 - find usages

CTRL+Q - kratka dokumentacia

CTRL+B alebo CTRL+KIik - navigacia k deklaracii niecoho
CTRL+F12 - navigacia v aktualne editovanom subore
CTRL+D - duplikacia bloku

CTRLA4SHIFT+I - ukaze rychlu definiciu

CTRL+SHIFT+B - ide do deklaracii typu
CTRLA+SHIFT+J - spoji 2 riadky

CTRLA+P - zoznam validnych parametrov v zatvorke v metode

CTRL4+SHIFT+BACKSPACE - da kurzor na poslednu zmenu, da sa pouzit viac

krat

CTRL+SHIFTH+FT7 - zvyrazni pouzitie nejakej premennej, pre pohyb medzi nimi

F3/Shift+F3

CTRLAE - zoznam naposledy pouzitych suborov

ALT+sipky - rychle skakanie cez metody v subore

CTRL+O - prepisanie metod

CTRL4+ALT+SHIFT+N - otvorenie nejakej konkretnej metody
ALT+SHIFT+C - prehlad poslednych zmien

Drzanie tlacitka mysi + ALT - oznacenie stlpcov

ALT+SHIFT+F10 - Run/Debug dropdown

209

11 JetBrains IDE (PyCharm) [SK]

CTRL+4+SHIFT—+I - popup okno, pozriet obrazok na mieste kde ukazuje mys
ALTH+ENTER - zoznam akcii, pre refaktorizaciu

CTRL+SLASH - comment/uncomment riadky

ALT++9 - zoznam zmien atd, z GITu

CTRL+ALT+T - kod obalit try/exceptom

ALT+ENTER - rychlo odstranit problem

CTRL+TAB - skakanie cez vsetky otvorene subory v editore
CTRL+K- Commit changes

CTRL+F a CTRL4R - search / replace

Ctrl+Alt+T - obalenie kodu niecim...

Ctrl+Enter - Chytre rozdelenie riadku na 2

Ctrl+U - chod o nadradenu triedu vyssie

Shift-+Shift - najde hocico

CTRL+SHIFT+K - pushovanie

Ctrl4+Delete / Ctrl+Backspace - vymazat po koniec / zaciatok slova
Ctrl+R - replace

Shift+F10 / F9 - Run / Debug

Alt+left /right - Prepinanie medzi oknami

Oznacenie RegExpu, Alt+Enter - do policka zadat string co by sa mal matchnut
- vyhodnoti to

210

12 References

1. Cracking the Coding Interview (6th edition) | Gayle Laakmann McDowell (from
2015)

https://www.amazon.co.uk/Cracking-Coding-Interview-6th-Programming/dp/
0984782850
2. Robert C. Martin series’
o Clean Code: A Handbook of Agile Software Craftsmanship (from 2009)

o The Clean Coder: A Code of Conduct for Professional Programmers (from
2011)

e Clean Architecture: A Craftsman’s Guide to Software Structure and Design
(from 2016)
3. Migrating to Microservice Databases - From Relational Monolith to Distributed
Data | Edson Yanaga (from 2017)
https://developers.redhat.com/books/migrating-microservice-databases-

relational-monolith-distributed-data/

4. Microservices in Production - Standard Principles and Requirements | Susan J.
Fowler (from 2017)

https://www.oreilly.com/library/view/microservices-in-production/9781492042846/

5. Software Architecture Patterns | Mark Richards (from 2015)

https://www.oreilly.com/library/view/software-architecture-patterns/
9781491971437/

6. Microservices vs. Service-Oriented Architecture | Mark Richards (from 2016)

https://www.openshift.com/microservices-ebook/

7. 97 Things Every Programmer Should Know | Kevlin Henney (from 2010)
https://www.oreilly.com/library/view/97-things-every/9780596809515/.

8. AWS Fundamentals: Going Cloud-Native | Coursera (from 2018 by Amazon Web
Services)

https://www.coursera.org/learn/aws-fundamentals-going-cloud-native

"https://www.amazon.co.uk/Robert-C-Martin/e/BOO0APGS7E

211

https://www.amazon.co.uk/Cracking-Coding-Interview-6th-Programming/dp/0984782850
https://www.amazon.co.uk/Cracking-Coding-Interview-6th-Programming/dp/0984782850
https://developers.redhat.com/books/migrating-microservice-databases-relational-monolith-distributed-data/
https://developers.redhat.com/books/migrating-microservice-databases-relational-monolith-distributed-data/
https://www.oreilly.com/library/view/microservices-in-production/9781492042846/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://www.openshift.com/microservices-ebook/
https://www.oreilly.com/library/view/97-things-every/9780596809515/
https://www.coursera.org/learn/aws-fundamentals-going-cloud-native
https://www.amazon.co.uk/Robert-C-Martin/e/B000APG87E

10.

11.

12.

12 References

. AWS Fundamentals: Building Serverless Applications | Coursera (from 2019 by

Amazon Web Services)

https://www.coursera.org/learn/aws-fundamentals-building-serverless-—
applications

The Data Engineering Cookbook | Andreas Kretz (version 3, 2019)
https://github.com/andkret/Cookbook

Soft Skills: The software developer’s life manual | John Sonmez (1st edition, 2014)
https://www.amazon.com/Soft-Skills-software-developers-manual/dp/1617292397

What You Need to Know about Docker | Scott Gallagher (2016)

212

https://www.coursera.org/learn/aws-fundamentals-building-serverless-applications
https://www.coursera.org/learn/aws-fundamentals-building-serverless-applications
https://github.com/andkret/Cookbook
https://www.amazon.com/Soft-Skills-software-developers-manual/dp/1617292397

	Contents
	1 General
	1.1 Programming Paradigms
	1.2 Software Development Paradigms and Methodologies
	1.3 Continuous Integration/Delivery/Deployment
	1.4 Concurrency

	2 Testing
	2.1 Unit Tests
	2.2 Component Tests
	2.3 Integration Tests
	2.4 System Tests
	2.5 Exploratory Tests
	2.6 Specialized Tests

	3 Clean Code
	3.1 Comments
	3.2 Formatting
	3.3 Error Handling
	3.4 Functions and Methods
	3.5 Classes
	3.6 System Level

	4 Design Patterns
	4.1 Creational Patterns
	4.2 Structural Patterns
	4.3 Behavioral Patterns

	5 Software Architecture Patterns
	5.1 Single-Tiered / Monolithic Architecture
	5.2 Multi-Tiered / Multi-Layered Architecture
	5.3 Client-Server Architecture
	5.4 Master-Slave Pattern
	5.5 Broker Pattern
	5.6 Peer-to-Peer Architecture
	5.7 Model-View-Controller Pattern
	5.8 Representational State Transfer (REST)
	5.9 Event-Driven Architecture
	5.10 Microkernel Architecture
	5.11 Space-Based Architecture
	5.12 Service-Oriented Architecture (SOA)
	5.13 Microservices Pattern

	6 Cloud Technologies
	6.1 Amazon Web Services

	7 Interviews
	7.1 Questions for Employer
	7.2 General Things to Know
	7.3 Behavioral Questions
	7.4 Software Engineering Interview Preparation
	7.5 Machine Learning Interview Preparation
	7.6 Topics

	8 Linux/Unix
	8.1 General Tools and Packages
	8.2 Helper tools for smaller scripting
	8.3 Networking
	8.4 Services and Processes
	8.5 Bash

	9 Mastering Git
	9.1 Basics & General
	9.2 Commit message
	9.3 Submodules
	9.4 Rebasing
	9.5 Feature Branch
	9.6 Reset
	9.7 Checkout
	9.8 Revert
	9.9 Tags
	9.10 Git Hooks
	9.11 Cherry Pick
	9.12 GitLab
	9.13 Git branching workflows

	10 Software Licences [SK]
	10.1 General
	10.2 MIT Licence
	10.3 Apache Licence, v2.0
	10.4 GNU AGPLv3
	10.5 GNU GPLv3 a LGLPv3
	10.6 Mozilla Public License 2.0
	10.7 The Unlicense
	10.8 Zlib-Libpng License (Zlib)
	10.9 BSD 2-Clause License (FreeBSD/Simplified)
	10.10 BSD 3-Clause License (Revised)
	10.11 EULA

	11 JetBrains IDE (PyCharm) [SK]
	11.1 Keyboard Shortcuts

	12 References

